本文著重于回測(cè)相關(guān)得模塊。
創(chuàng)新互聯(lián)建站主營(yíng)龍港網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營(yíng)網(wǎng)站建設(shè)方案,APP應(yīng)用開(kāi)發(fā),龍港h5微信小程序定制開(kāi)發(fā)搭建,龍港網(wǎng)站營(yíng)銷推廣歡迎龍港等地區(qū)企業(yè)咨詢由于上一篇文章實(shí)在是寫得太爛了, 這一篇文章重新開(kāi)始寫。
以官方教程示例為例
python -c "from pyalgotrade.tools import yahoofinance; yahoofinance.download_daily_bars('orcl', 2000, 'orcl-2000.csv')"
from pyalgotrade import strategy
from pyalgotrade.barfeed import yahoofeed
from pyalgotrade.technical import ma
class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument, smaPeriod):
super(MyStrategy, self).__init__(feed, 1000)
self.__position = None
self.__instrument = instrument
# We'll use adjusted close values instead of regular close values.
self.setUseAdjustedValues(True)
self.__sma = ma.SMA(feed[instrument].getPriceDataSeries(), smaPeriod)
def onEnterOk(self, position):
execInfo = position.getEntryOrder().getExecutionInfo()
self.info("BUY at $%.2f" % (execInfo.getPrice()))
def onEnterCanceled(self, position):
self.__position = None
def onExitOk(self, position):
execInfo = position.getExitOrder().getExecutionInfo()
self.info("SELL at $%.2f" % (execInfo.getPrice()))
self.__position = None
def onExitCanceled(self, position):
# If the exit was canceled, re-submit it.
self.__position.exitMarket()
def onBars(self, bars):
# Wait for enough bars to be available to calculate a SMA.
if self.__sma[-1] is None:
return
bar = bars[self.__instrument]
# If a position was not opened, check if we should enter a long position.
if self.__position is None:
if bar.getPrice() > self.__sma[-1]:
# Enter a buy market order for 10 shares. The order is good till canceled.
self.__position = self.enterLong(self.__instrument, 10, True)
# Check if we have to exit the position.
elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
self.__position.exitMarket()
def run_strategy(smaPeriod):
# Load the yahoo feed from the CSV file
feed = yahoofeed.Feed()
feed.addBarsFromCSV("orcl", "orcl-2000.csv")
# Evaluate the strategy with the feed.
myStrategy = MyStrategy(feed, "orcl", smaPeriod)
myStrategy.run()
print "Final portfolio value: $%.2f" % myStrategy.getBroker().getEquity()
run_strategy(15)
用于承載回測(cè)的數(shù)據(jù),提供接口訪問(wèn),驅(qū)動(dòng)整個(gè)事件循環(huán)。
# 導(dǎo)入yahoofeed模塊
from pyalgotrade.barfeed import yahoofeed
# 創(chuàng)建yahoofeed.Feed類創(chuàng)建其實(shí)例
feed = yahoofeed.Feed()
# 通過(guò)addBarsFromCSV加載本地csv文件
# 傳入股票代碼名, 文件路徑
feed.addBarsFromCSV("orcl", "orcl-2000.csv")
注: 由IntelliJ Idea生成
由上圖可知, 分別繼承不同的BarFeed,最終業(yè)務(wù)邏輯基類pyalgotrade.observer.subject.
主要方法調(diào)用順序如下:
yahooFeed.addBarsFromCSV
-> csvFeed.BarFeed.addBarsFromCSV
-> membf.BarFeed.addBarsFromSequence
-> barfeed.registerInstrument
-> feed.registerDataSeries
-> barfeed.createDataSeries
在Feed中有兩個(gè)比較重要的數(shù)據(jù)對(duì)象
pyalgotrade/pyalgotrade/dataseries/bards.py
class BarDataSeries(dataseries.SequenceDataSeries):
def __init__(self, maxLen=None):
super(BarDataSeries, self).__init__(maxLen)
self.__openDS = dataseries.SequenceDataSeries(maxLen)
self.__closeDS = dataseries.SequenceDataSeries(maxLen)
self.__highDS = dataseries.SequenceDataSeries(maxLen)
self.__lowDS = dataseries.SequenceDataSeries(maxLen)
self.__volumeDS = dataseries.SequenceDataSeries(maxLen)
self.__adjCloseDS = dataseries.SequenceDataSeries(maxLen)
self.__extraDS = {}
self.__useAdjustedValues = False
BarDataSeries提供一系列方法返回相應(yīng)的數(shù)據(jù)序列,以getOpenDataSeries為例
pyalgotrade/pyalgotrade/dataseries/bards.py:87
def getOpenDataSeries(self):
"""Returns a :class:`pyalgotrade.dataseries.DataSeries` with the open prices."""
return self.__openDS
而dataseries.SequenceDataSeries對(duì)象是一個(gè)數(shù)據(jù)存儲(chǔ)在collections.ListDeque對(duì)象上,并集成事件監(jiān)聽(tīng)的類對(duì)象.
self._bars在membf.BarFeed.addBarsFromSequence方法中讀取csv文件生成.
self._ds在barfeed.createDataSeries方法中創(chuàng)建一個(gè)默認(rèn)長(zhǎng)度為1024的BarDataSeries空數(shù)據(jù)對(duì)象.
bar是含有時(shí)間, 開(kāi)盤價(jià), 收盤價(jià), 當(dāng)日最高價(jià), 當(dāng)日最低價(jià), 成交量,復(fù)權(quán)收盤價(jià)的數(shù)據(jù)對(duì)象.
self.__bars是key為股票代碼, value是元素為bars數(shù)據(jù)對(duì)象的列表的字典.
self.__ds是BarDataSeries對(duì)象
事件循環(huán)是PyalgoTrade的數(shù)據(jù)引擎,驅(qū)動(dòng)著整個(gè)策略運(yùn)轉(zhuǎn).
下面是Pyalgotrade內(nèi)部事件循環(huán)的一個(gè)簡(jiǎn)單的實(shí)現(xiàn)。
# coding: utf8
import abc
class Event(object):
"""事件類.
用于訂閱指定的操作,如函數(shù)
當(dāng)事件執(zhí)行emit方法的時(shí)候,遍歷訂閱了的操作,并執(zhí)行該操作"""
def __init__(self):
# 內(nèi)部handlers列表
self.__handlers = []
def subscribe(self, handler):
if handler not in self.__handlers:
self.__handlers.append(handler)
def emit(self, *args, **kwargs):
"""執(zhí)行所有訂閱了的操作"""
for handler in self.__handlers:
handler(*args, **kwargs)
class Subject(object):
"""將元類指向abc.ABCMeta元類
1. 當(dāng)抽象方法未被實(shí)現(xiàn)的時(shí)候,不能新建該類的實(shí)例
2. abstractmethod相當(dāng)于子類要實(shí)現(xiàn)的接口,如果不實(shí)現(xiàn),則不能新建該類的實(shí)例"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def start(self):
pass
@abc.abstractmethod
def stop(self):
pass
@abc.abstractmethod
def dispatch(self):
raise NotImplementedError()
@abc.abstractmethod
def eof(self):
raise NotImplementedError()
class Dispatcher(object):
"""調(diào)度類
1. 維護(hù)事件循環(huán)
2. 不斷的調(diào)度subject的disptch操作并判斷是否結(jié)束"""
def __init__(self):
self.__subjects = []
self.__stop = False
def run(self):
"""運(yùn)行整個(gè)事件循環(huán)并在調(diào)度之前,之后分別調(diào)用subject的start, stop方法"""
try:
for subject in self.__subjects:
subject.start()
while not self.__stop:
eof, dispatched = self.dispatch()
if eof:
self.__stop = True
finally:
for subject in self.__subjects:
subject.stop()
def dispatch(self):
ret = False
eof = False
for subject in self.__subjects:
ret = subject.dispatch() is True
eof = subject.eof()
return eof, ret
def addSubject(self, subject):
self.__subjects.append(subject)
class Broker(Subject):
"""Broker 類"""
def dispatch(self):
return None
def eof(self):
return None
def start(self):
pass
def stop(self):
pass
class Feed(Subject):
"""Feed類
1. 承載數(shù)據(jù)源
2. 通過(guò)數(shù)據(jù)驅(qū)動(dòng)事件循環(huán)"""
def __init__(self, size):
self.__data = range(size)
self.__nextPos = 0
self.__event = Event()
def start(self):
pass
def stop(self):
pass
def dispatch(self):
value = self.__data[self.__nextPos]
self.__event.emit(value)
self.__nextPos += 1
return True
def getNewValueEvent(self):
return self.__event
def eof(self):
return self.__nextPos >= len(self.__data)
class Strategy(object):
def __init__(self, broker, feed):
self.__dispatcher = Dispatcher()
self.__feed = feed
self.__broker = broker
# 將策略的self.__onBars方法傳入Feed的self.__event里面
# 當(dāng)Feed調(diào)用dispatch方法的時(shí)候, 會(huì)指定self.__onBars函數(shù)
self.__feed.getNewValueEvent().subscribe(self.__onBars)
# 注意順序,Feed對(duì)象必須在最后
self.__dispatcher.addSubject(self.__broker)
self.__dispatcher.addSubject(self.__feed)
def __onBars(self, value):
print("dispatch before.")
self.onBars(value)
print("dispatch after")
def onBars(self, value):
print("on Bar: {}".format(value))
def run(self):
self.__dispatcher.run()
if __name__ == '__main__':
feed = Feed(3)
broker = Broker()
myStrategy = Strategy(broker, feed)
myStrategy.run()
output:
dispatch before.
on Bar: 0
dispatch after
dispatch before.
on Bar: 1
dispatch after
dispatch before.
on Bar: 2
dispatch after
上面的代碼主要說(shuō)明策略的onBars方法是怎么被調(diào)用的。
關(guān)于Broker怎么被驅(qū)動(dòng),在后面講解
- 策略中維護(hù)一個(gè)調(diào)度器dispatcher,當(dāng)策略啟動(dòng)的時(shí)候, 調(diào)度器dipatcher啟動(dòng), 并嘗試調(diào)用feed,broker start方法.
- 不斷調(diào)用feed, broker的dispatch方法, 判斷是否結(jié)束, 如果結(jié)束, 則做結(jié)束動(dòng)作, 調(diào)用feed, broker的stop方法
- feed對(duì)象在調(diào)用dispatch方法的時(shí)候, feed對(duì)象會(huì)觸發(fā)自身維護(hù)的self._event. 而self._event在MyStrategy._init_方法中,通過(guò)self._feed.getNewValueEvent().subscribe(self._onBars)訂閱了MyStrategy._onBars方法, 所以Feed對(duì)象每次dispatch的時(shí)候,MyStrategy._onBars都會(huì)被調(diào)用.
至此, Feed對(duì)象怎么驅(qū)動(dòng)策略的邏輯已經(jīng)清晰。
接下來(lái),講解BaseStrategy, BacktestingStrategy初始化過(guò)程
策略的繼承鏈并不復(fù)雜, 所有策略的基類是BaseStartegy, BacktestingStrategy是提供給用戶使用的策略,至少實(shí)現(xiàn)onBars函數(shù)則可以回測(cè)。
BaseStrategy, BacktestingStrategy的初始化源代碼如下
pyalgotrade/pyalgotrade/strategy/__init__.py
class BaseStartegy(object):
def __init__(self, barFeed, broker):
# 綁定barFeed對(duì)象
self.__barFeed = barFeed
# 綁定broker對(duì)象
self.__broker = broker
# 交易相關(guān)的倉(cāng)位
self.__activePositions = set()
# 訂單處理順序
self.__orderToPosition = {}
# bar被處理后的事件
self.__barsProcessedEvent = observer.Event()
# analyzer列表
self.__analyzers = []
# 命名的analyzer列表
self.__namedAnalyzers = {}
# 重新取樣的feed對(duì)象列表
self.__resampledBarFeeds = []
# 調(diào)度器對(duì)象
self.__dispatcher = dispatcher.Dispatcher()
# broker的訂單被更新時(shí)的事件, 訂閱self.__onOrderEvent方法
self.__broker.getOrderUpdatedEvent().subscribe(self.__onOrderEvent)
# barfeed值被更新的時(shí)候的事件(當(dāng)barfeed被調(diào)度的時(shí)候),訂閱self.__onBars方法
self.__barFeed.getNewValuesEvent().subscribe(self.__onBars)
# 調(diào)度器的開(kāi)始事件,訂閱self.onStart方法
self.__dispatcher.getStartEvent().subscribe(self.onStart)
# 調(diào)度器的空閑事件, 訂閱self.__onIdle方法
self.__dispatcher.getIdleEvent().subscribe(self.__onIdle)
# 分別將繼承了Subject類的broker,barFeed對(duì)象加入到調(diào)度器的subject列表
self.__dispatcher.addSubject(self.__broker)
self.__dispatcher.addSubject(self.__barFeed)
# 日志級(jí)別的初始化
self.__logger = logger.getLogger(BaseStrategy.LOGGER_NAME)
class BacktestingStrategy(BaseStrategy):
# 默認(rèn)初始化一個(gè)持有100w現(xiàn)金的虛擬賬戶
def __init__(self, barFeed, cash_or_brk=1000000):
# 如果沒(méi)有傳入cash_or_brk參數(shù), 或者傳入數(shù)值類型的值
# 則傳入cash_or_brk,barFeed對(duì)象新建一個(gè)backtesting.Broker實(shí)例,并調(diào)用父類的__init__方法
# 如果傳入的cash_or_brk參數(shù)值是backtesting.Broker的實(shí)例, 則直接使用
if isinstance(cash_or_brk, pyalgotrade.broker.Broker):
broker = cash_or_brk
else:
broker = backtesting.Broker(cash_or_brk, barFeed)
BaseStrategy.__init__(self, barFeed, broker)
# 默認(rèn)self.__useAdjustedValue=False
self.__useAdjustedValues = False
# 配置日志參數(shù)
self.setUseEventDateTimeInLogs(True)
self.setDebugMode(True)
總的來(lái)說(shuō)真正Strategy對(duì)象,barFeed對(duì)象,broker對(duì)象訂閱了更多的事件, 以及更多的判斷。但,內(nèi)核都是調(diào)度器驅(qū)動(dòng)著barFeed, broker對(duì)象不斷的被調(diào)度(調(diào)用dispatch方法), 而barFeed對(duì)象會(huì)不斷的從self._bars中取數(shù)據(jù)追加到self._ds對(duì)象中,并將取出來(lái)的數(shù)據(jù)提交的self._event中,而self._event訂閱了Strategy.__onBars方法, 所以不斷的驅(qū)動(dòng)著Strategy的自定義策略(onBars里面定義的交易邏輯).
在Strategy對(duì)象初始化時(shí)候, 會(huì)初始化一個(gè)虛擬的回測(cè)賬戶.
回測(cè)賬戶broker需要傳入barfeed對(duì)象, 并在barfeed的event對(duì)象里面訂閱自己的onBars函數(shù),源碼如下:
pyalgotrade/pyalgotrade/broker/__init__.py
class Broker(broker.Broker):
LOGGER_NAME = "broker.backtesting"
def __init__(self, cash, barFeed, commission=None):
super(Broker, self).__init__()
assert(cash >= 0)
self.__cash = cash
if commission is None:
self.__commission = NoCommission()
else:
self.__commission = commission
self.__shares = {}
self.__activeOrders = {}
self.__useAdjustedValues = False
# 持倉(cāng)策略, 使用DefaultStrategy
# 使用DefaultStrategy.volumeLimit = 0.25
# 當(dāng)交易訂單的成交量大于當(dāng)前bar的成交量的25%則不能成交
# 沒(méi)有滑點(diǎn)
# 沒(méi)有手續(xù)費(fèi)
self.__fillStrategy = fillstrategy.DefaultStrategy()
self.__logger = logger.getLogger(Broker.LOGGER_NAME)
# 讓barfeed對(duì)象訂閱self.onBars方法
barFeed.getNewValuesEvent().subscribe(self.onBars)
self.__barFeed = barFeed
self.__allowNegativeCash = False
self.__nextOrderId = 1
由上可知,當(dāng)barFeed對(duì)象數(shù)據(jù)更新的時(shí)候,還會(huì)調(diào)用BackTestBroker.onBars方法.
當(dāng)使用enterLong之類交易方法,則會(huì)返回一個(gè)Postion的對(duì)象,這個(gè)對(duì)象承載著當(dāng)前各股的持倉(cāng)比例,以及持有現(xiàn)金.
以enterLong方法說(shuō)明持倉(cāng)流程.
以exitMarket方法說(shuō)明平倉(cāng)流程.
源代碼調(diào)用鏈太長(zhǎng)....所以文字概括.
當(dāng)我們買入或者賣出的時(shí)候,其實(shí)是提交一個(gè)訂單給交易賬戶(broker), 交易賬戶會(huì)根據(jù)交易訂單的類型,動(dòng)作等相關(guān)信息執(zhí)行相關(guān)的操作.
交易訂單的類型參考: https://www.thebalance.com/understanding-stock-orders-3141318
一般有買入(做多), 賣出(做空)兩種交易類型, 但是這兩種類型成交的方式分別由市價(jià)成交, 限價(jià)成交.
所以一共由以下四種類型,對(duì)應(yīng)Strategy的四個(gè)方法:
以enter開(kāi)頭是更加上層的方法, 建議使用.
goodTillCanceled為了適配實(shí)盤接口, 實(shí)盤接口可能有前一天的訂單不會(huì)再執(zhí)行的限制,所以設(shè)置goodTillCanceled=True保證第二天或者更后的時(shí)間,訂單依然有效,直至手動(dòng)取消.
除了提交交易訂單還可以提交止損訂單, 分別對(duì)應(yīng)Strategy的兩個(gè)方法.
每個(gè)提交的訂單會(huì)到下一個(gè)事件循環(huán)才會(huì)判斷條件是否符合,才會(huì)執(zhí)行.
通過(guò)借助自定義指標(biāo)或者自帶的指標(biāo),如SMA,EMA,MACD等可以更全面的看待股票的走勢(shì)以及信號(hào).
下面是技術(shù)指標(biāo)基類的初始化過(guò)程.
pyalgotrade/pyalgotrade/technical/__init__.py
class EventWindow(object):
"""數(shù)據(jù)實(shí)際承載類
數(shù)據(jù)保存在self__values里面
"""
def __init__(self, windowSize, dtype=float, skipNone=True):
assert(windowSize > 0)
assert(isinstance(windowSize, int))
self.__values = collections.NumPyDeque(windowSize, dtype)
self.__windowSize = windowSize
self.__skipNone = skipNone
def onNewValue(self, dateTime, value):
"""提供onNewValue方法將新的值傳入"""
if value is not None or not self.__skipNone:
self.__values.append(value)
def getValues(self):
"""獲取EventWindows的所有值"""
return self.__values.data()
def getWindowSize(self):
"""獲取EventWindow Size"""
return self.__windowSize
def windowFull(self):
"""eventWindow是否已經(jīng)填滿"""
return len(self.__values) == self.__windowSize
def getValue(self):
"""子類須實(shí)現(xiàn)的類"""
raise NotImplementedError()
class EventBasedFilter(dataseries.SequenceDataSeries):
def __init__(self, dataSeries, eventWindow, maxLen=None):
super(EventBasedFilter, self).__init__(maxLen)
self.__dataSeries = dataSeries
# 當(dāng)dataseries數(shù)據(jù)有新值的時(shí)候,調(diào)用self.__onNewValues方法
self.__dataSeries.getNewValueEvent().subscribe(self.__onNewValue)
self.__eventWindow = eventWindow
def __onNewValue(self, dataSeries, dateTime, value):
# 讓EventWindow對(duì)象計(jì)算新值
self.__eventWindow.onNewValue(dateTime, value)
# 獲取計(jì)算后的結(jié)果
newValue = self.__eventWindow.getValue()
# 將值保存到自身實(shí)例里面, 即self.__values
# 因?yàn)槔^承了dataseries.SequenceDataSeries類
# 而dataseries.SequenceDataSeries父類實(shí)現(xiàn)了__getitem__方法, 所以可以使用索引取值.
self.appendWithDateTime(dateTime, newValue)
def getDataSeries(self):
return self.__dataSeries
def getEventWindow(self):
return self.__eventWindow
在Feed對(duì)象初始過(guò)程中,會(huì)初始化兩個(gè)比較重要的數(shù)據(jù)結(jié)構(gòu), 一個(gè)是self._bars, 一個(gè)是self._ds,在整個(gè)事件驅(qū)動(dòng)中, 策略不停的從self_bars中取數(shù)據(jù),然后使用appendWithDateTime方法將數(shù)據(jù)追加的self._ds里面。
源碼如下:
pyalgotrade/pyalgotrade/dataseries/bards.py
# 首先調(diào)用BarDataSeries的appendWithDateTime方法
class BarDataSeries(dataseries.SequenceDataSeries):
def appendWithDateTime(self, dateTime, bar):
assert(dateTime is not None)
assert(bar is not None)
bar.setUseAdjustedValue(self.__useAdjustedValues)
super(BarDataSeries, self).appendWithDateTime(dateTime, bar)
self.__openDS.appendWithDateTime(dateTime, bar.getOpen())
self.__closeDS.appendWithDateTime(dateTime, bar.getClose())
self.__highDS.appendWithDateTime(dateTime, bar.getHigh())
self.__lowDS.appendWithDateTime(dateTime, bar.getLow())
self.__volumeDS.appendWithDateTime(dateTime, bar.getVolume())
self.__adjCloseDS.appendWithDateTime(dateTime, bar.getAdjClose())
# Process extra columns.
for name, value in bar.getExtraColumns().iteritems():
extraDS = self.__getOrCreateExtraDS(name)
extraDS.appendWithDateTime(dateTime, value)
pyalgotrade/dataseries/__init__.py
# 然后調(diào)用SequenceDataSeries對(duì)象的appendWithDateTime
# 在這個(gè)方法中提交數(shù)據(jù)更新的事件
class SequenceDataSeries(DataSeries):
def appendWithDateTime(self, dateTime, value):
"""
Appends a value with an associated datetime.
.. note::
If dateTime is not None, it must be greater than the last one.
"""
if dateTime is not None and len(self.__dateTimes) != 0 and self.__dateTimes[-1] >= dateTime:
raise Exception("Invalid datetime. It must be bigger than that last one")
assert(len(self.__values) == len(self.__dateTimes))
self.__dateTimes.append(dateTime)
self.__values.append(value)
self.getNewValueEvent().emit(self, dateTime, value)
使用技術(shù)指標(biāo)需要傳入dataSeries對(duì)象, 可以通過(guò)getPriceDataSeries, getOpenDataSeries等獲得.
由于上面已經(jīng)有完整版本的代碼,這里做一定的刪減, 并做注解.
# 集成strategy.BacktestingStrategy類
class MyStrategy(strategy.BacktestingStrategy):
def __init__(self, feed, instrument, smaPeriod):
# 調(diào)用父類__init__方法
super(MyStrategy, self).__init__(feed, 1000)
# 初始情況下,postion設(shè)置為零, postion一般只持倉(cāng)比例
self.__position = None
# 股票代碼
self.__instrument = instrument
# We'll use adjusted close values instead of regular close values.
# 是否使用復(fù)權(quán)收盤價(jià)
self.setUseAdjustedValues(True)
# 初始化策略指標(biāo)
self.__sma = ma.SMA(feed[instrument].getPriceDataSeries(), smaPeriod)
# 省略其他鉤子函數(shù)
# 必須實(shí)現(xiàn)的onBars函數(shù),用于買賣的主要邏輯
def onBars(self, bars):
# 如果沒(méi)有簡(jiǎn)單移動(dòng)平均值則什么都不做
if self.__sma[-1] is None:
return
# 取出指定股票代碼的bar對(duì)象
bar = bars[self.__instrument]
# 如果postion is None,即持倉(cāng)為0
if self.__position is None:
# 如果收盤價(jià)大于簡(jiǎn)單移動(dòng)平均值則買入
if bar.getPrice() > self.__sma[-1]:
# 買入,enterLong=做多
self.__position = self.enterLong(self.__instrument, 10, True)
# 反之賣出
elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
self.__position.exitMarket()
BarFeed像是PyalgoTrade中的燃料,不斷的供給給策略的Dispatcher調(diào)度器, 使整個(gè)策略不斷運(yùn)行,直至沒(méi)有燃料(沒(méi)有新的數(shù)據(jù).)
BarFeed使數(shù)據(jù)源的一個(gè)抽象,里面保存著兩個(gè)重要的數(shù)據(jù)結(jié)構(gòu), self._bars, self._ds.
self.__bars是key為股票代碼, value是元素為bar數(shù)據(jù)對(duì)象的列表的字典.
self.__ds為BarDataSeries對(duì)象.
Broker維護(hù)著虛擬賬戶里面的現(xiàn)金以及相關(guān)股票的倉(cāng)位.接收訂單并實(shí)時(shí)的處理訂單, 計(jì)算收益等.
Position為股票倉(cāng)位持有情況的對(duì)象, 提供交易的相關(guān)接口.
EventBasedFilter為技術(shù)指標(biāo), 可以計(jì)算相關(guān)指標(biāo)如MACD, SMA等, 也可以自定義自己的技術(shù)指標(biāo).
Strategy為自定義策略,只需實(shí)現(xiàn)onBars函數(shù)即可完成買賣邏輯, 將Broker,Position相關(guān)接口放在Strategy實(shí)例方法里面, 同一調(diào)用接口.
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。