本篇內(nèi)容主要講解“Python怎么實(shí)現(xiàn)LSTM時(shí)間序列預(yù)測”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實(shí)用性強(qiáng)。下面就讓小編來帶大家學(xué)習(xí)“Python怎么實(shí)現(xiàn)LSTM時(shí)間序列預(yù)測”吧!
成都創(chuàng)新互聯(lián)公司是一家集網(wǎng)站建設(shè),涼州企業(yè)網(wǎng)站建設(shè),涼州品牌網(wǎng)站建設(shè),網(wǎng)站定制,涼州網(wǎng)站建設(shè)報(bào)價(jià),網(wǎng)絡(luò)營銷,網(wǎng)絡(luò)優(yōu)化,涼州網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強(qiáng)企業(yè)競爭力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時(shí)我們時(shí)刻保持專業(yè)、時(shí)尚、前沿,時(shí)刻以成就客戶成長自我,堅(jiān)持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實(shí)用型網(wǎng)站。參考數(shù)據(jù):
數(shù)據(jù)一共兩列,左邊是日期,右邊是乘客數(shù)量
對(duì)數(shù)據(jù)做可視化:
import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import read_csv from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error #load dataset dataframe = read_csv('./international-airline-passengers.csv',usecols =[1],header = None,engine = 'python',skipfooter = 3) dataset = dataframe.values #將整型變?yōu)閒loat dataset = dataset.astype('float32') plt.plot(dataset) plt.show()
可視化結(jié)果:
下面開始進(jìn)行建模:
完整代碼:
import math import numpy import pandas as pd import matplotlib.pyplot as plt from pandas import read_csv from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error def create_dataset(dataset,look_back = 1): dataX,dataY = [],[] for i in range(len(dataset) - look_back - 1): a = dataset[i:i+look_back,0] b = dataset[i+look_back,0] dataX.append(a) dataY.append(b) return numpy.array(dataX),numpy.array(dataY) numpy.random.seed(7) dataframe = read_csv('./international-airline-passengers.csv',usecols = [1],header = None,engine = 'python') dataset = dataframe.values dataset = dataset.astype('float32') scaler = MinMaxScaler(feature_range = (0,1)) dataset = scaler.fit_transform(dataset) train_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train,test = dataset[0:train_size,:],dataset[train_size:len(dataset),:] look_back = 1 trainX,trainY = create_dataset(train,look_back) testX,testY = create_dataset(test,look_back) #reshape input to be [samples, time steps, features] trainX = numpy.reshape(trainX,(trainX.shape[0],look_back,trainX.shape[1])) testX = numpy.reshape(testX,(testX.shape[0],look_back,testX.shape[1])) #create and fit the LSTM network model = Sequential() model.add(LSTM(4,input_shape = (1,look_back))) model.add(Dense(1)) model.compile(loss = 'mean_squared_error',optimizer = 'adam') model.fit(trainX,trainY,epochs = 100,batch_size = 1,verbose = 2) # make predictions trainPredict = model.predict(trainX) testPredict = model.predict(testX) # invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # calculate root mean squared error trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) print('Train Score: %.2f RMSE' % (trainScore)) testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) print('Test Score: %.2f RMSE' % (testScore)) # shift train predictions for plotting trainPredictPlot = numpy.empty_like(dataset) trainPredictPlot[:, :] = numpy.nan trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict # shift test predictions for plotting testPredictPlot = numpy.empty_like(dataset) testPredictPlot[:, :] = numpy.nan testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict # plot baseline and predictions plt.plot(scaler.inverse_transform(dataset)) plt.plot(trainPredictPlot) plt.plot(testPredictPlot) plt.show()
運(yùn)行結(jié)果:
到此,相信大家對(duì)“Python怎么實(shí)現(xiàn)LSTM時(shí)間序列預(yù)測”有了更深的了解,不妨來實(shí)際操作一番吧!這里是創(chuàng)新互聯(lián)網(wǎng)站,更多相關(guān)內(nèi)容可以進(jìn)入相關(guān)頻道進(jìn)行查詢,關(guān)注我們,繼續(xù)學(xué)習(xí)!