真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

詳解如何使用Spark和Scala分析Apache訪問日志

服務器

安裝

創(chuàng)新互聯(lián)是一家集網(wǎng)站建設,玉山企業(yè)網(wǎng)站建設,玉山品牌網(wǎng)站建設,網(wǎng)站定制,玉山網(wǎng)站建設報價,網(wǎng)絡營銷,網(wǎng)絡優(yōu)化,玉山網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強企業(yè)競爭力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時我們時刻保持專業(yè)、時尚、前沿,時刻以成就客戶成長自我,堅持不斷學習、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實用型網(wǎng)站。

首先需要安裝好Java和Scala,然后下載Spark安裝,確保PATH 和JAVA_HOME 已經(jīng)設置,然后需要使用Scala的SBT 構建Spark如下:

$ sbt/sbt assembly

構建時間比較長。構建完成后,通過運行下面命令確證安裝成功:

$ ./bin/spark-shell
scala> val textFile = sc.textFile(README.md) // 創(chuàng)建一個指向 README.md 引用
scala> textFile.count // 對這個文件內(nèi)容行數(shù)進行計數(shù)
scala> textFile.first // 打印出第一行

Apache訪問日志分析器

首先我們需要使用Scala編寫一個對Apache訪問日志的分析器,所幸已經(jīng)有人編寫完成,下載Apache logfile parser code。使用SBT進行編譯打包:

sbt compile
sbt test
sbt package

打包名稱假設為AlsApacheLogParser.jar。
然后在Linux命令行啟動Spark:

// this works
$ MASTER=local[4] SPARK_CLASSPATH=AlsApacheLogParser.jar ./bin/spark-shell

對于Spark 0.9,有些方式并不起效:

// does not work
$ MASTER=local[4] ADD_JARS=AlsApacheLogParser.jar ./bin/spark-shell
// does not work
spark> :cp AlsApacheLogParser.jar

上傳成功后,在Spark REPL創(chuàng)建AccessLogParser 實例:

import com.alvinalexander.accesslogparser._
val p = new AccessLogParser

現(xiàn)在就可以像之前讀取readme.cmd一樣讀取apache訪問日志accesslog.small:

scala> val log = sc.textFile(accesslog.small)
14/03/09 11:25:23 INFO MemoryStore: ensureFreeSpace(32856) called with curMem=0, maxMem=309225062
14/03/09 11:25:23 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 32.1 KB, free 294.9 MB)
log: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at :15
scala> log.count
(a lot of output here)
res0: Long = 100000

分析Apache日志

我們可以分析Apache日志中404有多少個,創(chuàng)建方法如下:

def getStatusCode(line: Option[AccessLogRecord]) = {
 line match {
  case Some(l) => l.httpStatusCode
  case None => 0
 }
}

其中Option[AccessLogRecord]是分析器的返回值。

然后在Spark命令行使用如下:

log.filter(line => getStatusCode(p.parseRecord(line)) == 404).count

這個統(tǒng)計將返回httpStatusCode是404的行數(shù)。

深入挖掘

下面如果我們想知道哪些URL是有問題的,比如URL中有一個空格等導致404錯誤,顯然需要下面步驟:

過濾出所有 404 記錄 從每個404記錄得到request字段(分析器請求的URL字符串是否有空格等) 不要返回重復的記錄

創(chuàng)建下面方法:

// get the `request` field from an access log record
def getRequest(rawAccessLogString: String): Option[String] = {
 val accessLogRecordOption = p.parseRecord(rawAccessLogString)
 accessLogRecordOption match {
  case Some(rec) => Some(rec.request)
  case None => None
 }
}

將這些代碼貼入Spark REPL,再運行如下代碼:

log.filter(line => getStatusCode(p.parseRecord(line)) == 404).map(getRequest(_)).count
val recs = log.filter(line => getStatusCode(p.parseRecord(line)) == 404).map(getRequest(_))
val distinctRecs = log.filter(line => getStatusCode(p.parseRecord(line)) == 404).map(getRequest(_)).distinct
distinctRecs.foreach(println)

總結

對于訪問日志簡單分析當然是要grep比較好,但是更復雜的查詢就需要Spark了。很難判斷 Spark在單個系統(tǒng)上的性能。這是因為Spark是針對分布式系統(tǒng)大文件。

以上就是本文的全部內(nèi)容,希望對大家的學習有所幫助,也希望大家多多支持創(chuàng)新互聯(lián)。


分享題目:詳解如何使用Spark和Scala分析Apache訪問日志
當前URL:http://weahome.cn/article/cjgcsj.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部