一場疫情,讓所有線下會議按下了暫停鍵,AI也不例外。
但一年一度的“頂會”卻不能不開,于是在4月26日,ICLR 2020(國際表征學(xué)習(xí)大會)就采取虛擬會議的形式,讓所有網(wǎng)友得以共襄盛舉。
值得一提的是,本次ICLR 大會接受了2594篇論文中的687篇,吸引了來自近90個(gè)國家的5600多名參與者,比2019年的2700人翻了一倍還多。不過,受疫情影響,這次大會也沒有評選論文。
既然如此,有沒有出現(xiàn)什么新鮮事物,值得我們思索和探究的呢?
那就不得不提到圖靈獎(jiǎng)獲得者、蒙特利爾學(xué)習(xí)算法研究所主任Yoshua Bengio,在其特邀報(bào)告中著重強(qiáng)調(diào)的“AI覺醒”。
此前我們科普過,通用人工智能有多么遙遠(yuǎn)。怎么短短幾年功夫,人工智能就要覺醒了?這就不得不從被Bengio視作機(jī)器學(xué)習(xí)大殺器的注意力機(jī)制說起了。
將意識注入機(jī)器:注意力機(jī)制再添重任
腦極體的資深讀者應(yīng)該對注意力機(jī)制并不陌生。在圖像處理、語音識別、自然語言處理等機(jī)器學(xué)習(xí)任務(wù)中,近兩年來都會引入注意力模型。
這么受業(yè)界歡迎,它的特點(diǎn)自然很突出:
一是可以讓神經(jīng)網(wǎng)絡(luò)學(xué)會只關(guān)注特定的部分,大幅度提升任務(wù)的效果與效率,在神經(jīng)機(jī)器翻譯、預(yù)訓(xùn)練語言模型、圖像識別等任務(wù)中都表現(xiàn)出了前所未有的成效。2015年Bahdanau 等人提出注意力機(jī)制之后,就被ICLR 錄用,如今它的各種變式已經(jīng)成為機(jī)器翻譯算法的“標(biāo)配”。
二是降低機(jī)器學(xué)習(xí)的成本,同時(shí)增加可解釋性。大家都知道深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的模型訓(xùn)練,往往依靠大規(guī)模的數(shù)據(jù)集,不僅數(shù)據(jù)獲取成本很高,訓(xùn)練的算力、時(shí)間也不菲,而注意力機(jī)制的“選擇性”,能夠直接為訓(xùn)練提質(zhì)增效,并且還能為序列數(shù)據(jù)建立了權(quán)值和映射,從而讓輸入和輸出能夠聯(lián)系起來,避免了算法的“黑箱性”。
既然注意力機(jī)制并不是什么新鮮事物,為什么Bengio特意在其報(bào)告《與意識相關(guān)的深度學(xué)習(xí)先驗(yàn)》中,將注意力機(jī)制奉為圭臬,甚至成了AI的希望?
簡單來說,Bengio認(rèn)為注意力機(jī)制能夠幫助機(jī)器學(xué)習(xí)模型獲得“有意識”的推理。
此前,諸多算法創(chuàng)新(如自監(jiān)督學(xué)習(xí)、元學(xué)習(xí)、多任務(wù)學(xué)習(xí)、遷移學(xué)習(xí)等)都是在幫助機(jī)器學(xué)習(xí)獲得“無意識”,也就是與人類直覺、習(xí)慣、先驗(yàn)經(jīng)驗(yàn)等類似的能力。
有了這種能力,AI可以很快地執(zhí)行一些直覺型的任務(wù),讓人感到非常智能。比如當(dāng)AI被訓(xùn)練學(xué)會了一些隱性知識以后,能夠?qū)⑦@些知識內(nèi)化,在遇到新事物時(shí)不需要重新訓(xùn)練,就能夠很快適應(yīng)。舉個(gè)例子,當(dāng)AI記住路況之后,它能夠自如地跟乘客聊天,同時(shí)也不耽誤自己隨時(shí)響應(yīng)交通狀況、安全駕駛。這是不是已經(jīng)超越許多人類駕駛員了呢?
但如果是在一個(gè)全新的道路上開車,如果有人在耳邊吵鬧,就會打斷人類司機(jī)的思路,使對方無法集中精力處理。這時(shí)候就要用到前面提到的“有意識的”系統(tǒng),來將一些新的概念,在新的情況下與不熟悉的東西聯(lián)系起來。
就像《西部世界》的科學(xué)顧問、神經(jīng)學(xué)家大衛(wèi)·伊格爾曼(David Eagleman)所說,意識,是一種突破程序設(shè)定的連接。
當(dāng)機(jī)器可以超越設(shè)定開始自行推理和思考,適應(yīng)甚至推斷出外界變化發(fā)生的原因,這不就是Deloris(《西部世界》女主角)們覺醒的時(shí)刻嗎?
從這個(gè)角度講,“有意識”的推理能力,正是深度學(xué)習(xí)變強(qiáng)大所需要的。
從超越人到模仿人,AI的回歸之路
既然“操縱”意識這么帶感,學(xué)者們又是如何為之努力的?過去數(shù)年間,注意力機(jī)制已經(jīng)發(fā)生了不小的發(fā)展和進(jìn)步。
從時(shí)間上看,注意力機(jī)制的能力開始為AI所用,要追溯到2014年谷歌團(tuán)隊(duì)在一個(gè)RNN卷積神經(jīng)網(wǎng)絡(luò)模型上用它來進(jìn)行圖像分類。但真正爆發(fā),主要還是由于其在NLP機(jī)器翻譯任務(wù)中證明了自己。
2017年,谷歌機(jī)器翻譯團(tuán)隊(duì)發(fā)表的《Attention is all you need》中,提出了一種新穎的基于注意力的機(jī)器翻譯架構(gòu),大量使用自注意力(self-attention)機(jī)制來學(xué)習(xí)文本表征,成為當(dāng)年最具影響力的論文之一。
隨后,它開始被廣泛應(yīng)用在基于RNN/CNN等神經(jīng)網(wǎng)絡(luò)模型的NLP任務(wù)中,也延伸出了不少變式,比如基于輸入項(xiàng)的柔性注意力(Item-wise Soft Attention)、基于輸入項(xiàng)的硬性注意力(Item-wise Hard Attention)、基于位置的柔性注意力(Location-wise Soft Attention)等等,核心指導(dǎo)思想都差不多,就是在神經(jīng)網(wǎng)絡(luò)的隱藏層,增加注意力機(jī)制的加權(quán)。
但需要注意的是,注意力機(jī)制依然存在不少問題:
比如,注意力機(jī)制與其說是一種技術(shù),不如說是一種指導(dǎo)思想。通過模擬人類閱讀、聽說中的注意力行為,來為不同輸入數(shù)據(jù)分配不同的權(quán)重。想要去的比較理想的效果,依然需要大量的數(shù)據(jù)投入訓(xùn)練。
可以說,注意力機(jī)制在神經(jīng)機(jī)器翻譯(NMT)任務(wù)上的優(yōu)秀表現(xiàn),依然建立在有大量高質(zhì)量語料的前提下。一旦面對比較極端的情況,比如某些語言幾乎沒有任何雙語語料,那再強(qiáng)的注意力機(jī)制也得抓瞎。
再比如,注意力機(jī)制達(dá)到“有意識”推理的前提,是具備理解隱性知識的能力,也就是那些難以用語言、文字、圖表進(jìn)行表述說明,不經(jīng)過邏輯推理、而是借由感官、直覺、領(lǐng)悟獲得的能力。
這對人類來說是“小菜一碟”,但想要將其嵌入到深度學(xué)習(xí)算法里面,卻并不是一件簡單的事。DeepMind就曾開發(fā)出一個(gè)交互式網(wǎng)絡(luò),試圖教會智能體像嬰兒一樣迅速了解到某些對象的屬性和關(guān)系。交互式網(wǎng)絡(luò)的預(yù)測結(jié)果要比一般神經(jīng)網(wǎng)絡(luò)精確得多,但距離模擬人類直覺迅速反饋,還為時(shí)尚早。而且,機(jī)器必須犯上成千上萬次的錯(cuò)誤,才能做出和人類一樣的正確操作。
換句話說,Bengio眼中的“注意力機(jī)制”,其實(shí)是升級版的“注意力3.0”,距離“機(jī)器覺醒”還早著呢。
機(jī)器覺醒,光靠Attention單打獨(dú)斗還不行
上述問題不僅阻攔了注意力機(jī)制的“封神之路”,也是阻擋人工智能發(fā)揮更高價(jià)值的障礙。
接下來向何處去,或許正如注意力機(jī)制被引入RNN一樣,繼續(xù)主動引入其他領(lǐng)域的算法和模型,會帶來不可知的神奇效果。
而從ICLR 2020的技術(shù)趨勢來看,也有不少算法開始被用來,與注意力機(jī)制一起解決諸如直覺、泛化等機(jī)器能力的重要問題。
比如元學(xué)習(xí)。在今年的入選論文中,谷歌有5篇是專門研究元學(xué)習(xí)。
簡單來說,元學(xué)習(xí)就是要讓智能體利用以往的知識經(jīng)驗(yàn)“學(xué)會如何學(xué)習(xí)”(Learning to learn),然后更高效地完成新任務(wù)。
具備這種能力,自然也就能夠解決訓(xùn)練數(shù)據(jù)不足、系統(tǒng)通用性低等問題,幫助AI不斷豐富和修正自身的知識網(wǎng)絡(luò)。具備了這一能力,獲得了人類常識的AI才有希望到達(dá)“有意識”的推理。
最后,也有必要大開腦洞,試想一下如果“有意識”的推理實(shí)現(xiàn),AI真的覺醒了,又會為人類帶來什么呢?
猜想一,AI的服務(wù)能力會顯而易見的提升,在實(shí)踐中不斷學(xué)習(xí)處理復(fù)雜的工作將不再是難事,想象中的智能家政機(jī)器人、智能女友/男友,都不再是問題。
猜想二,AI可以像人類一樣推理,同時(shí)擁有了情感,那么自然可以締結(jié)自己的社會關(guān)系,屆時(shí)為什么整個(gè)社會還需要如我這樣的普通人,咱也不知道。
幸好,今天無論是注意力機(jī)制,還是人工智能本身,想要復(fù)刻人類的腦力還需要更長的時(shí)間,以及更多的耐心。更值得欣慰的是,在疫情“黑天鵝”的席卷之下,AI依然帶領(lǐng)全球產(chǎn)業(yè)者連接、思考、探尋未來的藏寶圖,這或許就是技術(shù)最令人沉迷之處。