這篇文章主要介紹了Python中譜減法語(yǔ)音降噪的示例分析,具有一定借鑒價(jià)值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
創(chuàng)新互聯(lián)建站-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價(jià)比東營(yíng)區(qū)網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫(kù),直接使用。一站式東營(yíng)區(qū)網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋東營(yíng)區(qū)地區(qū)。費(fèi)用合理售后完善,十余年實(shí)體公司更值得信賴。代碼中用到了nextpow2,其中n = nextpow2(x) 表示最接近x的2的n次冪。
#!/usr/bin/env python import numpy as np import wave import nextpow2 import math # 打開WAV文檔 f = wave.open("filename.wav") # 讀取格式信息 # (nchannels, sampwidth, framerate, nframes, comptype, compname) params = f.getparams() nchannels, sampwidth, framerate, nframes = params[:4] fs = framerate # 讀取波形數(shù)據(jù) str_data = f.readframes(nframes) f.close() # 將波形數(shù)據(jù)轉(zhuǎn)換為數(shù)組 x = np.fromstring(str_data, dtype=np.short) # 計(jì)算參數(shù) len_ = 20 * fs // 1000 PERC = 50 len1 = len_ * PERC // 100 len2 = len_ - len1 # 設(shè)置默認(rèn)參數(shù) Thres = 3 Expnt = 2.0 beta = 0.002 G = 0.9 # 初始化漢明窗 win = np.hamming(len_) # normalization gain for overlap+add with 50% overlap winGain = len2 / sum(win) # Noise magnitude calculations - assuming that the first 5 frames is noise/silence nFFT = 2 * 2 ** (nextpow2.nextpow2(len_)) noise_mean = np.zeros(nFFT) j = 0 for k in range(1, 6): noise_mean = noise_mean + abs(np.fft.fft(win * x[j:j + len_], nFFT)) j = j + len_ noise_mu = noise_mean / 5 # --- allocate memory and initialize various variables k = 1 img = 1j x_old = np.zeros(len1) Nframes = len(x) // len2 - 1 xfinal = np.zeros(Nframes * len2) # ========================= Start Processing =============================== for n in range(0, Nframes): # Windowing insign = win * x[k-1:k + len_ - 1] # compute fourier transform of a frame spec = np.fft.fft(insign, nFFT) # compute the magnitude sig = abs(spec) # save the noisy phase information theta = np.angle(spec) SNRseg = 10 * np.log10(np.linalg.norm(sig, 2) ** 2 / np.linalg.norm(noise_mu, 2) ** 2) def berouti(SNR): if -5.0 <= SNR <= 20.0: a = 4 - SNR * 3 / 20 else: if SNR < -5.0: a = 5 if SNR > 20: a = 1 return a def berouti1(SNR): if -5.0 <= SNR <= 20.0: a = 3 - SNR * 2 / 20 else: if SNR < -5.0: a = 4 if SNR > 20: a = 1 return a if Expnt == 1.0: # 幅度譜 alpha = berouti1(SNRseg) else: # 功率譜 alpha = berouti(SNRseg) ############# sub_speech = sig ** Expnt - alpha * noise_mu ** Expnt; # 當(dāng)純凈信號(hào)小于噪聲信號(hào)的功率時(shí) diffw = sub_speech - beta * noise_mu ** Expnt # beta negative components def find_index(x_list): index_list = [] for i in range(len(x_list)): if x_list[i] < 0: index_list.append(i) return index_list z = find_index(diffw) if len(z) > 0: # 用估計(jì)出來(lái)的噪聲信號(hào)表示下限值 sub_speech[z] = beta * noise_mu[z] ** Expnt # --- implement a simple VAD detector -------------- if SNRseg < Thres: # Update noise spectrum noise_temp = G * noise_mu ** Expnt + (1 - G) * sig ** Expnt # 平滑處理噪聲功率譜 noise_mu = noise_temp ** (1 / Expnt) # 新的噪聲幅度譜 # flipud函數(shù)實(shí)現(xiàn)矩陣的上下翻轉(zhuǎn),是以矩陣的“水平中線”為對(duì)稱軸 # 交換上下對(duì)稱元素 sub_speech[nFFT // 2 + 1:nFFT] = np.flipud(sub_speech[1:nFFT // 2]) x_phase = (sub_speech ** (1 / Expnt)) * (np.array([math.cos(x) for x in theta]) + img * (np.array([math.sin(x) for x in theta]))) # take the IFFT xi = np.fft.ifft(x_phase).real # --- Overlap and add --------------- xfinal[k-1:k + len2 - 1] = x_old + xi[0:len1] x_old = xi[0 + len1:len_] k = k + len2 # 保存文件 wf = wave.open('outfile.wav', 'wb') # 設(shè)置參數(shù) wf.setparams(params) # 設(shè)置波形文件 .tostring()將array轉(zhuǎn)換為data wave_data = (winGain * xfinal).astype(np.short) wf.writeframes(wave_data.tostring()) wf.close()
感謝你能夠認(rèn)真閱讀完這篇文章,希望小編分享的“Python中譜減法語(yǔ)音降噪的示例分析”這篇文章對(duì)大家有幫助,同時(shí)也希望大家多多支持創(chuàng)新互聯(lián),關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,更多相關(guān)知識(shí)等著你來(lái)學(xué)習(xí)!