import numpy as np
創(chuàng)新互聯(lián)公司是一家集網(wǎng)站建設(shè),白城企業(yè)網(wǎng)站建設(shè),白城品牌網(wǎng)站建設(shè),網(wǎng)站定制,白城網(wǎng)站建設(shè)報(bào)價(jià),網(wǎng)絡(luò)營(yíng)銷,網(wǎng)絡(luò)優(yōu)化,白城網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強(qiáng)企業(yè)競(jìng)爭(zhēng)力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時(shí)我們時(shí)刻保持專業(yè)、時(shí)尚、前沿,時(shí)刻以成就客戶成長(zhǎng)自我,堅(jiān)持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實(shí)用型網(wǎng)站。# 序列化和反序列化
import pickle
from sklearn.preprocessing import OneHotEncoder
import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
數(shù)據(jù)加載(使用pickle)
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='ISO-8859-1')
return dict
labels = []
X_train = []
for i in range(1,6):
data = unpickle('./cifar-10-batches-py/data_batch_%d'%(i))
labels.append(data['labels'])
X_train.append(data['data'])
# 將list類型轉(zhuǎn)換為ndarray
X_train = np.array(X_train)
y_train = np.array(labels).reshape(-1)
# reshape
X_train = X_train.reshape(-1,3072)
# 目標(biāo)值概率
one_hot = OneHotEncoder()
y_train =one_hot.fit_transform(y_train.reshape(-1,1)).toarray()
# 測(cè)試數(shù)據(jù)加載
test = unpickle('./cifar-10-batches-py/test_batch')
X_test = test['data']
y_test = one_hot.transform(np.array(test['labels']).reshape(-1,1)).toarray()
# 從總數(shù)據(jù)中獲取一批數(shù)據(jù)
index = 0
def next_batch(X,y):
global index
batch_X = X[index*128:(index+1)*128]
batch_y = y[index*128:(index+1)*128]
index+=1
if index == 390:
index = 0
return batch_X,batch_y
構(gòu)建神經(jīng)網(wǎng)絡(luò)
1.生成對(duì)應(yīng)卷積核
2.tf.nn.conv2d進(jìn)行卷積運(yùn)算
3.歸一化操作 tf.layers.batch_normalization
4.激活函數(shù)(relu)
5.池化操作
X = tf.placeholder(dtype=tf.float32,shape = [None,3072])
y = tf.placeholder(dtype=tf.float32,shape = [None,10])
kp = tf.placeholder(dtype=tf.float32)
def gen_v(shape,std = 5e-2):
return tf.Variable(tf.truncated_normal(shape = shape,stddev=std))
def conv(input_,filter_,b):
conv = tf.nn.conv2d(input_,filter_,strides=[1,1,1,1],padding='SAME') + b
conv = tf.layers.batch_normalization(conv,training=True)
conv = tf.nn.relu(conv)
return tf.nn.max_pool(conv,[1,3,3,1],[1,2,2,1],'SAME')
def net_work(X,kp):
# 形狀改變,4維
input_ = tf.reshape(X,shape = [-1,32,32,3])
# 第一層
filter1 = gen_v(shape = [3,3,3,64])
b1 = gen_v(shape = [64])
pool1 = conv(input_,filter1,b1)
# 第二層
filter2 = gen_v([3,3,64,128])
b2 = gen_v(shape = [128])
pool2 = conv(pool1,filter2,b2)
# 第三層
filter3 = gen_v([3,3,128,256])
b3 = gen_v([256])
pool3 = conv(pool2,filter3,b3)
# 第一層全連接層
dense = tf.reshape(pool3,shape = [-1,4*4*256])
fc1_w = gen_v(shape = [4*4*256,1024])
fc1_b = gen_v([1024])
bn_fc_1 = tf.layers.batch_normalization(tf.matmul(dense,fc1_w) + fc1_b,training=True)
relu_fc_1 = tf.nn.relu(bn_fc_1)
# fc1.shape = [-1,1024]
# dropout
dp = tf.nn.dropout(relu_fc_1,keep_prob=kp)
# fc2 輸出層
out_w = gen_v(shape = [1024,10])
out_b = gen_v(shape = [10])
out = tf.matmul(dp,out_w) + out_b
return out
損失函數(shù)準(zhǔn)確率&最優(yōu)化
out = net_work(X,kp)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=out))
# 準(zhǔn)確率
y_ = tf.nn.softmax(out)
# equal 相當(dāng)于 ==
equal = tf.equal(tf.argmax(y,axis = -1),tf.argmax(y_,axis = 1))
accuracy = tf.reduce_mean(tf.cast(equal,tf.float32))
opt = tf.train.AdamOptimizer(0.01).minimize(loss)
opt鄭州婦科醫(yī)院 http://www.120zzkd.com/
開(kāi)啟訓(xùn)練
saver = tf.train.Saver()
epoches = 100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(epoches):
batch_X,batch_y = next_batch(X_train,y_train)
opt_,loss_ ,score_train= sess.run([opt,loss,accuracy],feed_dict = {X:batch_X,y:batch_y,kp:0.5})
print('iter count:%d。mini_batch loss:%0.4f。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:%0.4f。測(cè)試數(shù)據(jù)上準(zhǔn)確率:%0.4f'%
(i+1,loss_,score_train,score_test))
if score_train > 0.6:
saver.save(sess,'./model/estimator',i+1)
saver.save(sess,'./model/estimator',i+1)
score_test = sess.run(accuracy,feed_dict = {X:X_test,y:y_test,kp:1.0})
print('測(cè)試數(shù)據(jù)上的準(zhǔn)確率:',score_test)
iter count:1。mini_batch loss:3.1455。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.0938。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:2。mini_batch loss:3.9139。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.2891。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:3。mini_batch loss:5.1961。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.1562。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:4。mini_batch loss:3.9102。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.2344。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:5。mini_batch loss:4.1278。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.1719。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
.....
iter count:97。mini_batch loss:1.5752。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.4844。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:98。mini_batch loss:1.8480。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.3906。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:99。mini_batch loss:1.5662。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.5391。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
iter count:100。mini_batch loss:1.7489。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.4141。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.2853
測(cè)試數(shù)據(jù)上的準(zhǔn)確率: 0.4711
epoches = 1100
with tf.Session() as sess:
saver.restore(sess,'./model/estimator-100')
for i in range(100,epoches):
batch_X,batch_y = next_batch(X_train,y_train)
opt_,loss_ ,score_train= sess.run([opt,loss,accuracy],feed_dict = {X:batch_X,y:batch_y,kp:0.5})
print('iter count:%d。mini_batch loss:%0.4f。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:%0.4f。測(cè)試數(shù)據(jù)上準(zhǔn)確率:%0.4f'%
(i+1,loss_,score_train,score_test))
if score_train > 0.6:
saver.save(sess,'./model/estimator',i+1)
saver.save(sess,'./model/estimator',i+1)
if (i%100 == 0) and (i != 100):
score_test = sess.run(accuracy,feed_dict = {X:X_test,y:y_test,kp:1.0})
print('----------------測(cè)試數(shù)據(jù)上的準(zhǔn)確率:---------------',score_test)
iter count:101。mini_batch loss:1.4157。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.5234。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:102。mini_batch loss:1.6045。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.4375。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
....
iter count:748。mini_batch loss:0.6842。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.7734。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:749。mini_batch loss:0.6560。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.8203。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:750。mini_batch loss:0.7151。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.7578。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:751。mini_batch loss:0.8092。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.7344。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:752。mini_batch loss:0.7394。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.7422。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:753。mini_batch loss:0.8732。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.7188。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
iter count:754。mini_batch loss:0.8762。訓(xùn)練數(shù)據(jù)上的準(zhǔn)確率:0.6953。測(cè)試數(shù)據(jù)上準(zhǔn)確率:0.4711
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)cdcxhl.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。