這期內(nèi)容當(dāng)中小編將會(huì)給大家?guī)?lái)有關(guān)使用python機(jī)器學(xué)習(xí)怎么實(shí)現(xiàn)決策樹,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
具體內(nèi)容如下
# -*- coding: utf-8 -*- """ Created on Sat Nov 9 10:42:38 2019 @author: asus """ """ 決策樹 目的: 1. 使用決策樹模型 2. 了解決策樹模型的參數(shù) 3. 初步了解調(diào)參數(shù) 要求: 基于乳腺癌數(shù)據(jù)集完成以下任務(wù): 1.調(diào)整參數(shù)criterion,使用不同算法信息熵(entropy)和基尼不純度算法(gini) 2.調(diào)整max_depth參數(shù)值,查看不同的精度 3.根據(jù)參數(shù)criterion和max_depth得出你初步的結(jié)論。 """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import mglearn from sklearn.model_selection import train_test_split #導(dǎo)入乳腺癌數(shù)據(jù)集 from sklearn.datasets import load_breast_cancer from sklearn.tree import DecisionTreeClassifier #決策樹并非深度越大越好,考慮過擬合的問題 #mglearn.plots.plot_animal_tree() #mglearn.plots.plot_tree_progressive() #獲取數(shù)據(jù)集 cancer = load_breast_cancer() #對(duì)數(shù)據(jù)集進(jìn)行切片 X_train,X_test,y_train,y_test = train_test_split(cancer.data,cancer.target, stratify = cancer.target,random_state = 42) #查看訓(xùn)練集和測(cè)試集數(shù)據(jù) print('train dataset :{0} ;test dataset :{1}'.format(X_train.shape,X_test.shape)) #建立模型(基尼不純度算法(gini)),使用不同大深度和隨機(jī)狀態(tài)和不同的算法看模型評(píng)分 tree = DecisionTreeClassifier(random_state = 0,criterion = 'gini',max_depth = 5) #訓(xùn)練模型 tree.fit(X_train,y_train) #評(píng)估模型 print("Accuracy(準(zhǔn)確性) on training set: {:.3f}".format(tree.score(X_train, y_train))) print("Accuracy(準(zhǔn)確性) on test set: {:.3f}".format(tree.score(X_test, y_test))) print(tree) # 參數(shù)選擇 max_depth,算法選擇基尼不純度算法(gini) or 信息熵(entropy) def Tree_score(depth = 3,criterion = 'entropy'): """ 參數(shù)為max_depth(默認(rèn)為3)和criterion(默認(rèn)為信息熵entropy), 函數(shù)返回模型的訓(xùn)練精度和測(cè)試精度 """ tree = DecisionTreeClassifier(criterion = criterion,max_depth = depth) tree.fit(X_train,y_train) train_score = tree.score(X_train, y_train) test_score = tree.score(X_test, y_test) return (train_score,test_score) #gini算法,深度對(duì)模型精度的影響 depths = range(2,25)#考慮到數(shù)據(jù)集有30個(gè)屬性 scores = [Tree_score(d,'gini') for d in depths] train_scores = [s[0] for s in scores] test_scores = [s[1] for s in scores] plt.figure(figsize = (6,6),dpi = 144) plt.grid() plt.xlabel("max_depth of decision Tree") plt.ylabel("score") plt.title("'gini'") plt.plot(depths,train_scores,'.g-',label = 'training score') plt.plot(depths,test_scores,'.r--',label = 'testing score') plt.legend() #信息熵(entropy),深度對(duì)模型精度的影響 scores = [Tree_score(d) for d in depths] train_scores = [s[0] for s in scores] test_scores = [s[1] for s in scores] plt.figure(figsize = (6,6),dpi = 144) plt.grid() plt.xlabel("max_depth of decision Tree") plt.ylabel("score") plt.title("'entropy'") plt.plot(depths,train_scores,'.g-',label = 'training score') plt.plot(depths,test_scores,'.r--',label = 'testing score') plt.legend()
運(yùn)行結(jié)果:
上述就是小編為大家分享的使用python機(jī)器學(xué)習(xí)怎么實(shí)現(xiàn)決策樹了,如果剛好有類似的疑惑,不妨參照上述分析進(jìn)行理解。如果想知道更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計(jì)公司行業(yè)資訊頻道。
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。