這篇文章主要介紹TensorFlow如何實(shí)現(xiàn)隨機(jī)訓(xùn)練和批量訓(xùn)練,文中介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們一定要看完!
成都創(chuàng)新互聯(lián)是一家集網(wǎng)站建設(shè),張掖企業(yè)網(wǎng)站建設(shè),張掖品牌網(wǎng)站建設(shè),網(wǎng)站定制,張掖網(wǎng)站建設(shè)報(bào)價(jià),網(wǎng)絡(luò)營(yíng)銷,網(wǎng)絡(luò)優(yōu)化,張掖網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強(qiáng)企業(yè)競(jìng)爭(zhēng)力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時(shí)我們時(shí)刻保持專業(yè)、時(shí)尚、前沿,時(shí)刻以成就客戶成長(zhǎng)自我,堅(jiān)持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實(shí)用型網(wǎng)站。TensorFlow更新模型變量。它能一次操作一個(gè)數(shù)據(jù)點(diǎn),也可以一次操作大量數(shù)據(jù)。一個(gè)訓(xùn)練例子上的操作可能導(dǎo)致比較“古怪”的學(xué)習(xí)過(guò)程,但使用大批量的訓(xùn)練會(huì)造成計(jì)算成本昂貴。到底選用哪種訓(xùn)練類型對(duì)機(jī)器學(xué)習(xí)算法的收斂非常關(guān)鍵。
為了TensorFlow計(jì)算變量梯度來(lái)讓反向傳播工作,我們必須度量一個(gè)或者多個(gè)樣本的損失。
隨機(jī)訓(xùn)練會(huì)一次隨機(jī)抽樣訓(xùn)練數(shù)據(jù)和目標(biāo)數(shù)據(jù)對(duì)完成訓(xùn)練。另外一個(gè)可選項(xiàng)是,一次大批量訓(xùn)練取平均損失來(lái)進(jìn)行梯度計(jì)算,批量訓(xùn)練大小可以一次上擴(kuò)到整個(gè)數(shù)據(jù)集。這里將顯示如何擴(kuò)展前面的回歸算法的例子——使用隨機(jī)訓(xùn)練和批量訓(xùn)練。
批量訓(xùn)練和隨機(jī)訓(xùn)練的不同之處在于它們的優(yōu)化器方法和收斂。
# 隨機(jī)訓(xùn)練和批量訓(xùn)練 #---------------------------------- # # This python function illustrates two different training methods: # batch and stochastic training. For each model, we will use # a regression model that predicts one model variable. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # 隨機(jī)訓(xùn)練: # Create graph sess = tf.Session() # 聲明數(shù)據(jù) x_vals = np.random.normal(1, 0.1, 100) y_vals = np.repeat(10., 100) x_data = tf.placeholder(shape=[1], dtype=tf.float32) y_target = tf.placeholder(shape=[1], dtype=tf.float32) # 聲明變量 (one model parameter = A) A = tf.Variable(tf.random_normal(shape=[1])) # 增加操作到圖 my_output = tf.multiply(x_data, A) # 增加L2損失函數(shù) loss = tf.square(my_output - y_target) # 初始化變量 init = tf.global_variables_initializer() sess.run(init) # 聲明優(yōu)化器 my_opt = tf.train.GradientDescentOptimizer(0.02) train_step = my_opt.minimize(loss) loss_stochastic = [] # 運(yùn)行迭代 for i in range(100): rand_index = np.random.choice(100) rand_x = [x_vals[rand_index]] rand_y = [y_vals[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%5==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) print('Loss = ' + str(temp_loss)) loss_stochastic.append(temp_loss) # 批量訓(xùn)練: # 重置計(jì)算圖 ops.reset_default_graph() sess = tf.Session() # 聲明批量大小 # 批量大小是指通過(guò)計(jì)算圖一次傳入多少訓(xùn)練數(shù)據(jù) batch_size = 20 # 聲明模型的數(shù)據(jù)、占位符 x_vals = np.random.normal(1, 0.1, 100) y_vals = np.repeat(10., 100) x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # 聲明變量 (one model parameter = A) A = tf.Variable(tf.random_normal(shape=[1,1])) # 增加矩陣乘法操作(矩陣乘法不滿足交換律) my_output = tf.matmul(x_data, A) # 增加損失函數(shù) # 批量訓(xùn)練時(shí)損失函數(shù)是每個(gè)數(shù)據(jù)點(diǎn)L2損失的平均值 loss = tf.reduce_mean(tf.square(my_output - y_target)) # 初始化變量 init = tf.global_variables_initializer() sess.run(init) # 聲明優(yōu)化器 my_opt = tf.train.GradientDescentOptimizer(0.02) train_step = my_opt.minimize(loss) loss_batch = [] # 運(yùn)行迭代 for i in range(100): rand_index = np.random.choice(100, size=batch_size) rand_x = np.transpose([x_vals[rand_index]]) rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%5==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) print('Loss = ' + str(temp_loss)) loss_batch.append(temp_loss) plt.plot(range(0, 100, 5), loss_stochastic, 'b-', label='Stochastic Loss') plt.plot(range(0, 100, 5), loss_batch, 'r--', label='Batch Loss, size=20') plt.legend(loc='upper right', prop={'size': 11}) plt.show()
輸出:
Step #5 A = [ 1.47604525]
Loss = [ 72.55678558]
Step #10 A = [ 3.01128507]
Loss = [ 48.22986221]
Step #15 A = [ 4.27042341]
Loss = [ 28.97912598]
Step #20 A = [ 5.2984333]
Loss = [ 16.44779968]
Step #25 A = [ 6.17473984]
Loss = [ 16.373312]
Step #30 A = [ 6.89866304]
Loss = [ 11.71054649]
Step #35 A = [ 7.39849901]
Loss = [ 6.42773056]
Step #40 A = [ 7.84618378]
Loss = [ 5.92940331]
Step #45 A = [ 8.15709782]
Loss = [ 0.2142024]
Step #50 A = [ 8.54818344]
Loss = [ 7.11651039]
Step #55 A = [ 8.82354641]
Loss = [ 1.47823763]
Step #60 A = [ 9.07896614]
Loss = [ 3.08244276]
Step #65 A = [ 9.24868107]
Loss = [ 0.01143846]
Step #70 A = [ 9.36772251]
Loss = [ 2.10078788]
Step #75 A = [ 9.49171734]
Loss = [ 3.90913701]
Step #80 A = [ 9.6622715]
Loss = [ 4.80727625]
Step #85 A = [ 9.73786926]
Loss = [ 0.39915398]
Step #90 A = [ 9.81853104]
Loss = [ 0.14876099]
Step #95 A = [ 9.90371323]
Loss = [ 0.01657014]
Step #100 A = [ 9.86669159]
Loss = [ 0.444787]
Step #5 A = [[ 2.34371352]]
Loss = 58.766
Step #10 A = [[ 3.74766445]]
Loss = 38.4875
Step #15 A = [[ 4.88928795]]
Loss = 27.5632
Step #20 A = [[ 5.82038736]]
Loss = 17.9523
Step #25 A = [[ 6.58999157]]
Loss = 13.3245
Step #30 A = [[ 7.20851326]]
Loss = 8.68099
Step #35 A = [[ 7.71694899]]
Loss = 4.60659
Step #40 A = [[ 8.1296711]]
Loss = 4.70107
Step #45 A = [[ 8.47107315]]
Loss = 3.28318
Step #50 A = [[ 8.74283409]]
Loss = 1.99057
Step #55 A = [[ 8.98811722]]
Loss = 2.66906
Step #60 A = [[ 9.18062305]]
Loss = 3.26207
Step #65 A = [[ 9.31655025]]
Loss = 2.55459
Step #70 A = [[ 9.43130589]]
Loss = 1.95839
Step #75 A = [[ 9.55670166]]
Loss = 1.46504
Step #80 A = [[ 9.6354847]]
Loss = 1.49021
Step #85 A = [[ 9.73470974]]
Loss = 1.53289
Step #90 A = [[ 9.77956581]]
Loss = 1.52173
Step #95 A = [[ 9.83666706]]
Loss = 0.819207
Step #100 A = [[ 9.85569191]]
Loss = 1.2197
訓(xùn)練類型 | 優(yōu)點(diǎn) | 缺點(diǎn) |
---|---|---|
隨機(jī)訓(xùn)練 | 脫離局部最小 | 一般需更多次迭代才收斂 |
批量訓(xùn)練 | 快速得到最小損失 | 耗費(fèi)更多計(jì)算資源 |
以上是“TensorFlow如何實(shí)現(xiàn)隨機(jī)訓(xùn)練和批量訓(xùn)練”這篇文章的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對(duì)大家有幫助,更多相關(guān)知識(shí),歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!