真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

mysql讀寫慢怎么弄 mysql讀快還是寫快

mysql服務(wù)器讀取速度優(yōu)化

在開始演示之前,我們先介紹下兩個(gè)概念。

十年的海南州網(wǎng)站建設(shè)經(jīng)驗(yàn),針對設(shè)計(jì)、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時(shí)及時(shí)工作處理。成都全網(wǎng)營銷的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動(dòng)調(diào)整海南州建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計(jì),從而大程度地提升瀏覽體驗(yàn)。創(chuàng)新互聯(lián)公司從事“海南州網(wǎng)站設(shè)計(jì)”,“海南州網(wǎng)站推廣”以來,每個(gè)客戶項(xiàng)目都認(rèn)真落實(shí)執(zhí)行。

概念一,數(shù)據(jù)的可選擇性基數(shù),也就是常說的cardinality值。

查詢優(yōu)化器在生成各種執(zhí)行計(jì)劃之前,得先從統(tǒng)計(jì)信息中取得相關(guān)數(shù)據(jù),這樣才能估算每步操作所涉及到的記錄數(shù),而這個(gè)相關(guān)數(shù)據(jù)就是cardinality。簡單來說,就是每個(gè)值在每個(gè)字段中的唯一值分布狀態(tài)。

比如表t1有100行記錄,其中一列為f1。f1中唯一值的個(gè)數(shù)可以是100個(gè),也可以是1個(gè),當(dāng)然也可以是1到100之間的任何一個(gè)數(shù)字。這里唯一值越的多少,就是這個(gè)列的可選擇基數(shù)。

那看到這里我們就明白了,為什么要在基數(shù)高的字段上建立索引,而基數(shù)低的的字段建立索引反而沒有全表掃描來的快。當(dāng)然這個(gè)只是一方面,至于更深入的探討就不在我這篇探討的范圍了。

概念二,關(guān)于HINT的使用。

這里我來說下HINT是什么,在什么時(shí)候用。

HINT簡單來說就是在某些特定的場景下人工協(xié)助MySQL優(yōu)化器的工作,使她生成最優(yōu)的執(zhí)行計(jì)劃。一般來說,優(yōu)化器的執(zhí)行計(jì)劃都是最優(yōu)化的,不過在某些特定場景下,執(zhí)行計(jì)劃可能不是最優(yōu)化。

比如:表t1經(jīng)過大量的頻繁更新操作,(UPDATE,DELETE,INSERT),cardinality已經(jīng)很不準(zhǔn)確了,這時(shí)候剛好執(zhí)行了一條SQL,那么有可能這條SQL的執(zhí)行計(jì)劃就不是最優(yōu)的。為什么說有可能呢?

來看下具體演示

譬如,以下兩條SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值剛好頻繁更新的值為30,并且沒有達(dá)到MySQL自動(dòng)更新cardinality值的臨界值或者說用戶設(shè)置了手動(dòng)更新又或者用戶減少了sample page等等,那么對這兩條語句來說,可能不準(zhǔn)確的就是B了。

這里順帶說下,MySQL提供了自動(dòng)更新和手動(dòng)更新表cardinality值的方法,因篇幅有限,需要的可以查閱手冊。

那回到正題上,MySQL 8.0 帶來了幾個(gè)HINT,我今天就舉個(gè)index_merge的例子。

示例表結(jié)構(gòu):

mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field ? ? ?| Type ? ? ? ? | Null | Key | Default | Extra ? ? ? ? ?|+------------+--------------+------+-----+---------+----------------+| id ? ? ? ? | int(11) ? ? ?| NO ? | PRI | NULL ? ?| auto_increment || rank1 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| rank2 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| log_time ? | datetime ? ? | YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|| prefix_uid | varchar(100) | YES ?| ? ? | NULL ? ?| ? ? ? ? ? ? ? ?|| desc1 ? ? ?| text ? ? ? ? | YES ?| ? ? | NULL ? ?| ? ? ? ? ? ? ? ?|| rank3 ? ? ?| int(11) ? ? ?| YES ?| MUL | NULL ? ?| ? ? ? ? ? ? ? ?|+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表記錄數(shù):

mysql select count(*) from t1;+----------+| count(*) |+----------+| ? ?32768 |+----------+1 row in set (0.01 sec)

這里我們兩條經(jīng)典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100 ?and rank2 =100 ?and rank3 =100;

表t1實(shí)際上在rank1,rank2,rank3三列上分別有一個(gè)二級索引。

那我們來看SQL C的查詢計(jì)劃。

顯然,沒有用到任何索引,掃描的行數(shù)為32034,cost為3243.65。

mysql explain ?format=json select * from t1 ?where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "3243.65" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "ALL", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"rows_examined_per_scan": 32034, ? ? ?"rows_produced_per_join": 115, ? ? ?"filtered": "0.36", ? ? ?"cost_info": { ? ? ? ?"read_cost": "3232.07", ? ? ? ?"eval_cost": "11.58", ? ? ? ?"prefix_cost": "3243.65", ? ? ? ?"data_read_per_join": "49K" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)

我們加上hint給相同的查詢,再次看看查詢計(jì)劃。

這個(gè)時(shí)候用到了index_merge,union了三個(gè)列。掃描的行數(shù)為1103,cost為441.09,明顯比之前的快了好幾倍。

mysql explain ?format=json select /*+ index_merge(t1) */ * from t1 ?where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "441.09" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "index_merge", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "union(idx_rank1,idx_rank2,idx_rank3)", ? ? ?"key_length": "5,5,5", ? ? ?"rows_examined_per_scan": 1103, ? ? ?"rows_produced_per_join": 1103, ? ? ?"filtered": "100.00", ? ? ?"cost_info": { ? ? ? ?"read_cost": "330.79", ? ? ? ?"eval_cost": "110.30", ? ? ? ?"prefix_cost": "441.09", ? ? ? ?"data_read_per_join": "473K" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)

我們再看下SQL D的計(jì)劃:

不加HINT,

mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "534.34" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "ref", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "idx_rank1", ? ? ?"used_key_parts": [ ? ? ? ?"rank1" ? ? ?], ? ? ?"key_length": "5", ? ? ?"ref": [ ? ? ? ?"const" ? ? ?], ? ? ?"rows_examined_per_scan": 555, ? ? ?"rows_produced_per_join": 0, ? ? ?"filtered": "0.07", ? ? ?"cost_info": { ? ? ? ?"read_cost": "478.84", ? ? ? ?"eval_cost": "0.04", ? ? ? ?"prefix_cost": "534.34", ? ? ? ?"data_read_per_join": "176" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: { ?"query_block": { ? ?"select_id": 1, ? ?"cost_info": { ? ? ?"query_cost": "5.23" ? ?}, ? ?"table": { ? ? ?"table_name": "t1", ? ? ?"access_type": "index_merge", ? ? ?"possible_keys": [ ? ? ? ?"idx_rank1", ? ? ? ?"idx_rank2", ? ? ? ?"idx_rank3" ? ? ?], ? ? ?"key": "intersect(idx_rank1,idx_rank2,idx_rank3)", ? ? ?"key_length": "5,5,5", ? ? ?"rows_examined_per_scan": 1, ? ? ?"rows_produced_per_join": 1, ? ? ?"filtered": "100.00", ? ? ?"cost_info": { ? ? ? ?"read_cost": "5.13", ? ? ? ?"eval_cost": "0.10", ? ? ? ?"prefix_cost": "5.23", ? ? ? ?"data_read_per_join": "440" ? ? ?}, ? ? ?"used_columns": [ ? ? ? ?"id", ? ? ? ?"rank1", ? ? ? ?"rank2", ? ? ? ?"log_time", ? ? ? ?"prefix_uid", ? ? ? ?"desc1", ? ? ? ?"rank3" ? ? ?], ? ? ?"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))" ? ?} ?}}1 row in set, 1 warning (0.00 sec)

對比下以上兩個(gè),加了HINT的比不加HINT的cost小了100倍。

總結(jié)下,就是說表的cardinality值影響這張的查詢計(jì)劃,如果這個(gè)值沒有正常更新的話,就需要手工加HINT了。相信MySQL未來的版本會帶來更多的HINT。

MySQL速度變慢,怎么辦

MySQL 在崩潰恢復(fù)時(shí),會遍歷打開所有 ibd 文件的 header page 驗(yàn)證數(shù)據(jù)字典的準(zhǔn)確性,如果 MySQL 中包含了大量表,這個(gè)校驗(yàn)過程就會比較耗時(shí)。 MySQL 下崩潰恢復(fù)確實(shí)和表數(shù)量有關(guān),表總數(shù)越大,崩潰恢復(fù)時(shí)間越長。另外磁盤 IOPS 也會影響崩潰恢復(fù)時(shí)間,像這里開發(fā)庫的 HDD IOPS 較低,因此面對大量的表空間,校驗(yàn)速度就非常緩慢。另外一個(gè)發(fā)現(xiàn),MySQL 8 下正常啟用時(shí)居然也會進(jìn)行表空間校驗(yàn),而故障恢復(fù)時(shí)則會額外再進(jìn)行一次表空間校驗(yàn),等于校驗(yàn)了 2 遍。不過 MySQL 8.0 里多了一個(gè)特性,即表數(shù)量超過 5W 時(shí),會啟用多線程掃描,加快表空間校驗(yàn)過程。

如何跳過校驗(yàn)MySQL 5.7 下有方法可以跳過崩潰恢復(fù)時(shí)的表空間校驗(yàn)過程嘛?查閱了資料,方法主要有兩種:

1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳過表空間校驗(yàn)。實(shí)際測試的時(shí)候設(shè)置 innodb_force_recovery =1,也就是強(qiáng)制恢復(fù)跳過壞頁,就可以跳過校驗(yàn),然后重啟就是正常啟動(dòng)了。通過這種臨時(shí)方式可以避免崩潰恢復(fù)后非常耗時(shí)的表空間校驗(yàn)過程,快速啟動(dòng) MySQL,個(gè)人目前暫時(shí)未發(fā)現(xiàn)有什么隱患。2. 使用共享表空間替代獨(dú)立表空間這樣就不需要打開 N 個(gè) ibd 文件了,只需要打開一個(gè) ibdata 文件即可,大大節(jié)省了校驗(yàn)時(shí)間。自從聽了姜老師講過使用共享表空間替代獨(dú)立表空間解決 drop 大表時(shí)性能抖動(dòng)的原理后,感覺共享表空間在很多業(yè)務(wù)環(huán)境下,反而更有優(yōu)勢。

臨時(shí)冒出另外一種解決想法,即用 GDB 調(diào)試崩潰恢復(fù),通過臨時(shí)修改 validate 變量值讓 MySQL 跳過表空間驗(yàn)證過程,然后讓 MySQL 正常關(guān)閉,重新啟動(dòng)就可以正常啟動(dòng)了。但是實(shí)際測試發(fā)現(xiàn),如果以 debug 模式運(yùn)行,確實(shí)可以臨時(shí)修改 validate 變量,跳過表空間驗(yàn)證過程,但是 debug 模式下代碼運(yùn)行效率大打折扣,反而耗時(shí)更長。而以非 debug 模式運(yùn)行,則無法修改 validate 變量,想法破滅。

mysql在Win7下寫入速度慢怎么解決

更改mysql配置如下:

# Uncomment the following if you are using InnoDB tables

#innodb_data_home_dir = /var/lib/mysql/

innodb_data_file_path = ibdata1:50M:autoextend

#innodb_log_group_home_dir = /var/lib/mysql/

#innodb_log_arch_dir = /var/lib/mysql/

# You can set .._buffer_pool_size up to 50 - 80 %

# of RAM but beware of setting memory usage too high

innodb_buffer_pool_size = 256M

innodb_additional_mem_pool_size = 10M

# Set .._log_file_size to 25 % of buffer pool size

#innodb_log_file_size = 128M

innodb_log_buffer_size = 8M

#innodb_flush_log_at_trx_commit = 1

#innodb_lock_wait_timeout = 50

innodb_support_xa=off

用mysql-connector-odbc-5[1].1.5-win32.msi這個(gè)驅(qū)動(dòng)程序

哥們,你建主鍵了沒?

排除了以上問題,還慢,就看看你的連接了,如果是自己寫的,那么建議你找個(gè)別人寫好的連接類試試。有時(shí)候代碼沒問題,db沒問題,那么只有時(shí)連接的問題了。


網(wǎng)頁名稱:mysql讀寫慢怎么弄 mysql讀快還是寫快
URL標(biāo)題:http://weahome.cn/article/dddgjss.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部