時(shí)間序列數(shù)據(jù)在數(shù)據(jù)科學(xué)領(lǐng)域無(wú)處不在,在量化金融領(lǐng)域也十分常見(jiàn),可以用于分析價(jià)格趨勢(shì),預(yù)測(cè)價(jià)格,探索價(jià)格行為等。
學(xué)會(huì)對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行可視化,能夠幫助我們更加直觀地探索時(shí)間序列數(shù)據(jù),尋找其潛在的規(guī)律。
本文會(huì)利用Python中的matplotlib【1】庫(kù),并配合實(shí)例進(jìn)行講解。matplotlib庫(kù)是一個(gè)用于創(chuàng)建出版質(zhì)量圖表的桌面繪圖包(2D繪圖庫(kù)),是Python中最基本的可視化工具。
【工具】Python 3
【數(shù)據(jù)】Tushare
【注】示例注重的是方法的講解,請(qǐng)大家靈活掌握。
1.單個(gè)時(shí)間序列
首先,我們從tushare.pro獲取指數(shù)日線行情數(shù)據(jù),并查看數(shù)據(jù)類(lèi)型。
import tushare as ts import pandas as pd pd.set_option('expand_frame_repr', False) # 顯示所有列 ts.set_token('your token') pro = ts.pro_api() df = pro.index_daily(ts_code='399300.SZ')[['trade_date', 'close']] df.sort_values('trade_date', inplace=True) df.reset_index(inplace=True, drop=True) print(df.head()) trade_date close 0 20050104 982.794 1 20050105 992.564 2 20050106 983.174 3 20050107 983.958 4 20050110 993.879 print(df.dtypes) trade_date object close float64 dtype: object
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專(zhuān)為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。