這篇文章主要講解了keras中的Merge層的詳細(xì)解析,內(nèi)容清晰明了,對(duì)此有興趣的小伙伴可以學(xué)習(xí)一下,相信大家閱讀完之后會(huì)有幫助。
創(chuàng)新互聯(lián)長(zhǎng)期為上千家客戶提供的網(wǎng)站建設(shè)服務(wù),團(tuán)隊(duì)從業(yè)經(jīng)驗(yàn)10年,關(guān)注不同地域、不同群體,并針對(duì)不同對(duì)象提供差異化的產(chǎn)品和服務(wù);打造開放共贏平臺(tái),與合作伙伴共同營(yíng)造健康的互聯(lián)網(wǎng)生態(tài)環(huán)境。為聶榮企業(yè)提供專業(yè)的網(wǎng)站設(shè)計(jì)、做網(wǎng)站,聶榮網(wǎng)站改版等技術(shù)服務(wù)。擁有十多年豐富建站經(jīng)驗(yàn)和眾多成功案例,為您定制開發(fā)。【題目】keras中的Merge層(實(shí)現(xiàn)層的相加、相減、相乘)
詳情請(qǐng)參考:
Merge層
一、層相加
keras.layers.Add()
添加輸入列表的圖層。
該層接收一個(gè)相同shape列表張量,并返回它們的和,shape不變。
Example
import keras input1 = keras.layers.Input(shape=(16,)) x1 = keras.layers.Dense(8, activation='relu')(input1) input2 = keras.layers.Input(shape=(32,)) x2 = keras.layers.Dense(8, activation='relu')(input2) added = keras.layers.Add()([x1, x2]) # equivalent to added = keras.layers.add([x1, x2]) out = keras.layers.Dense(4)(added) model = keras.models.Model(inputs=[input1, input2], outputs=out)