這篇文章將為大家詳細(xì)講解有關(guān)如何在Python中使用pandas計算數(shù)據(jù)相關(guān)系數(shù),文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關(guān)知識有一定的了解。
興安盟網(wǎng)站制作公司哪家好,找創(chuàng)新互聯(lián)公司!從網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、APP開發(fā)、響應(yīng)式網(wǎng)站設(shè)計等網(wǎng)站項目制作,到程序開發(fā),運營維護。創(chuàng)新互聯(lián)公司2013年開創(chuàng)至今到現(xiàn)在10年的時間,我們擁有了豐富的建站經(jīng)驗和運維經(jīng)驗,來保證我們的工作的順利進行。專注于網(wǎng)站建設(shè)就選創(chuàng)新互聯(lián)公司。Python是一種跨平臺的、具有解釋性、編譯性、互動性和面向?qū)ο蟮哪_本語言,其最初的設(shè)計是用于編寫自動化腳本,隨著版本的不斷更新和新功能的添加,常用于用于開發(fā)獨立的項目和大型項目。
計算DataFrame對象中所有列之間的相關(guān)系數(shù)(包括pearson相關(guān)系數(shù)、Kendall Tau相關(guān)系數(shù)和spearman秩相關(guān))。
>>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random.randint(1, 100, 10), 'C':np.random.randint(1, 100, 10)}) >>> df A B C 0 5 91 3 1 90 15 66 2 93 27 3 3 70 44 66 4 27 14 10 5 35 46 20 6 33 14 69 7 12 41 15 8 28 62 47 9 15 92 77 >>> df.corr() # pearson相關(guān)系數(shù) A B C A 1.000000 -0.560009 0.162105 B -0.560009 1.000000 0.014687 C 0.162105 0.014687 1.000000 >>> df.corr('kendall') # Kendall Tau相關(guān)系數(shù) A B C A 1.000000 -0.314627 0.113666 B -0.314627 1.000000 0.045980 C 0.113666 0.045980 1.000000 >>> df.corr('spearman') # spearman秩相關(guān) A B C A 1.000000 -0.419455 0.128051 B -0.419455 1.000000 0.067279 C 0.128051 0.067279 1.000000
關(guān)于如何在Python中使用pandas計算數(shù)據(jù)相關(guān)系數(shù)就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學(xué)到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。