真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python實(shí)現(xiàn)樸素貝葉斯分類(lèi)器-創(chuàng)新互聯(lián)

本文用的是sciki-learn庫(kù)的iris數(shù)據(jù)集進(jìn)行測(cè)試。用的模型也是最簡(jiǎn)單的,就是用貝葉斯定理P(A|B) = P(B|A)*P(A)/P(B),計(jì)算每個(gè)類(lèi)別在樣本中概率(代碼中是pLabel變量)

創(chuàng)新互聯(lián)建站是一家專注于成都網(wǎng)站設(shè)計(jì)、網(wǎng)站制作與策劃設(shè)計(jì),鐵西網(wǎng)站建設(shè)哪家好?創(chuàng)新互聯(lián)建站做網(wǎng)站,專注于網(wǎng)站建設(shè)十多年,網(wǎng)設(shè)計(jì)領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:鐵西等地區(qū)。鐵西做網(wǎng)站價(jià)格咨詢:18982081108

以及每個(gè)類(lèi)下每個(gè)特征的概率(代碼中是pNum變量)。

寫(xiě)得比較粗糙,對(duì)于某個(gè)類(lèi)下沒(méi)有此特征的情況采用p=1/樣本數(shù)量。

有什么錯(cuò)誤有人發(fā)現(xiàn)麻煩提出,謝謝。

[python] view plain copy
# -*- coding:utf-8 -*- 
from numpy import * 
from sklearn import datasets 
import numpy as np 
 
class NaiveBayesClassifier(object): 
 
  def __init__(self): 
    self.dataMat = list() 
    self.labelMat = list() 
    self.pLabel = {} 
    self.pNum = {} 
 
  def loadDataSet(self): 
    iris = datasets.load_iris() 
    self.dataMat = iris.data 
    self.labelMat = iris.target 
    labelSet = set(iris.target) 
    labelList = [i for i in labelSet] 
    labelNum = len(labelList) 
    for i in range(labelNum): 
      self.pLabel.setdefault(labelList[i]) 
      self.pLabel[labelList[i]] = np.sum(self.labelMat==labelList[i])/float(len(self.labelMat)) 
 
  def seperateByClass(self): 
    seperated = {} 
    for i in range(len(self.dataMat)): 
      vector = self.dataMat[i] 
      if self.labelMat[i] not in seperated: 
        seperated[self.labelMat[i]] = [] 
      seperated[self.labelMat[i]].append(vector) 
    return seperated 
 
  # 通過(guò)numpy array二維數(shù)組來(lái)獲取每一維每種數(shù)的概率 
  def getProbByArray(self, data): 
    prob = {} 
    for i in range(len(data[0])): 
      if i not in prob: 
        prob[i] = {} 
      dataSetList = list(set(data[:, i])) 
      for j in dataSetList: 
        if j not in prob[i]: 
          prob[i][j] = 0 
        prob[i][j] = np.sum(data[:, i] == j) / float(len(data[:, i])) 
    prob[0] = [1 / float(len(data[:,0]))] # 防止feature不存在的情況 
    return prob 
 
  def train(self): 
    featureNum = len(self.dataMat[0]) 
    seperated = self.seperateByClass() 
    t_pNum = {} # 存儲(chǔ)每個(gè)類(lèi)別下每個(gè)特征每種情況出現(xiàn)的概率 
    for label, data in seperated.iteritems(): 
      if label not in t_pNum: 
        t_pNum[label] = {} 
      t_pNum[label] = self.getProbByArray(np.array(data)) 
    self.pNum = t_pNum 
 
  def classify(self, data): 
    label = 0 
    pTest = np.ones(3) 
    for i in self.pLabel: 
      for j in self.pNum[i]: 
        if data[j] not in self.pNum[i][j]: 
          pTest[i] *= self.pNum[i][0][0] 
        else: 
          pTest[i] *= self.pNum[i][j][data[j]] 
    pMax = np.max(pTest) 
    ind = np.where(pTest == pMax) 
    return ind[0][0] 
 
  def test(self): 
    self.loadDataSet() 
    self.train() 
    pred = [] 
    right = 0 
    for d in self.dataMat: 
      pred.append(self.classify(d)) 
    for i in range(len(self.labelMat)): 
      if pred[i] == self.labelMat[i]: 
        right += 1 
    print right / float(len(self.labelMat)) 
 
if __name__ == '__main__': 
  NB = NaiveBayesClassifier() 
  NB.test() 

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。


當(dāng)前名稱:python實(shí)現(xiàn)樸素貝葉斯分類(lèi)器-創(chuàng)新互聯(lián)
網(wǎng)站鏈接:http://weahome.cn/article/dhpcpc.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部