使用pandas怎么對據(jù)類型進行轉(zhuǎn)換?針對這個問題,這篇文章詳細介紹了相對應(yīng)的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。
成都創(chuàng)新互聯(lián)公司是一家專注于成都網(wǎng)站制作、做網(wǎng)站與策劃設(shè)計,長白網(wǎng)站建設(shè)哪家好?成都創(chuàng)新互聯(lián)公司做網(wǎng)站,專注于網(wǎng)站建設(shè)十多年,網(wǎng)設(shè)計領(lǐng)域的專業(yè)建站公司;建站業(yè)務(wù)涵蓋:長白等地區(qū)。長白做網(wǎng)站價格咨詢:028-86922220當(dāng)利用pandas進行數(shù)據(jù)處理的時候,經(jīng)常會遇到數(shù)據(jù)類型的問題,當(dāng)拿到數(shù)據(jù)的時候,首先需要確定拿到的是正確類型的數(shù)據(jù),一般通過數(shù)據(jù)類型的轉(zhuǎn)化,這篇文章就介紹pandas里面的數(shù)據(jù)類型(data types也就是常用的dtyps),以及pandas與numpy之間的數(shù)據(jù)對應(yīng)關(guān)系。
主要介紹object,int64,float64,datetime64,bool等幾種類型,category與timedelta兩種類型會單獨的在其他文章中進行介紹。當(dāng)然本文中也會涉及簡單的介紹。
數(shù)據(jù)類型的問題一般都是出了問題之后才會發(fā)現(xiàn)的,所以有了一些經(jīng)驗之后就會拿到數(shù)據(jù)之后,就直接看數(shù)據(jù)類型,是否與自己想要處理的數(shù)據(jù)格式一致,這樣可以從一開始避免一些尷尬的問題出現(xiàn)。那么我們以一個簡單的例子,利用jupyter notebook進行一個數(shù)據(jù)類型的介紹。
####按照慣例導(dǎo)入兩個常用的數(shù)據(jù)處理的包,numpy與pandas import numpy as np import pandas as pd # 從csv文件讀取數(shù)據(jù),數(shù)據(jù)表格中只有5行,里面包含了float,string,int三種數(shù)據(jù)python類型,也就是分別對應(yīng)的pandas的float64,object,int64 # csv文件中共有六列,第一列是表頭,其余是數(shù)據(jù)。 df = pd.read_csv("sales_data_types.csv") print(df)
Customer Number Customer Name 2016 2017 \
0 10002 Quest Industries $125,000.00 $162,500.00
1 552278 Smith Plumbing $920,000.00 $1,012,000.00
2 23477 ACME Industrial $50,000.00 $62,500.00
3 24900 Brekke LTD $350,000.00 $490,000.00
4 651029 Harbor Co $15,000.00 $12,750.00Percent Growth Jan Units Month Day Year Active
0 30.00% 500 1 10 2015 Y
1 10.00% 700 6 15 2014 Y
2 25.00% 125 3 29 2016 Y
3 4.00% 75 10 27 2015 Y
4 -15.00% Closed 2 2 2014 N
df.dtypes
Customer Number int64
Customer Name object
2016 object
2017 object
Percent Growth object
Jan Units object
Month int64
Day int64
Year int64
Active object
dtype: object
# 假如想得到2016年與2017年的數(shù)據(jù)總和,可以嘗試,但并不是我們需要的答案,因為這兩列中的數(shù)據(jù)類型是object,執(zhí)行該操作之后,得到是一個更加長的字符串, # 當(dāng)然我們可以通過df.info() 來獲得關(guān)于數(shù)據(jù)框的更多的詳細信息, df['2016']+df['2017']
0 $125,000.00 $162,500.00
1 $920,000.00 $1,012,000.00
2 $50,000.00 $62,500.00
3 $350,000.00 $490,000.00
4 $15,000.00 $12,750.00
dtype: object
df.info() # Customer Number 列是float64,然而應(yīng)該是int64 # 2016 2017兩列的數(shù)據(jù)是object,并不是float64或者int64格式 # Percent以及Jan Units 也是objects而不是數(shù)字格式 # Month,Day以及Year應(yīng)該轉(zhuǎn)化為datetime64[ns]格式 # Active 列應(yīng)該是布爾值 # 如果不做數(shù)據(jù)清洗,很難進行下一步的數(shù)據(jù)分析,為了進行數(shù)據(jù)格式的轉(zhuǎn)化,pandas里面有三種比較常用的方法 # 1. astype()強制轉(zhuǎn)化數(shù)據(jù)類型 # 2. 通過創(chuàng)建自定義的函數(shù)進行數(shù)據(jù)轉(zhuǎn)化 # 3. pandas提供的to_nueric()以及to_datetime()
RangeIndex: 5 entries, 0 to 4
Data columns (total 10 columns):
Customer Number 5 non-null int64
Customer Name 5 non-null object
2016 5 non-null object
2017 5 non-null object
Percent Growth 5 non-null object
Jan Units 5 non-null object
Month 5 non-null int64
Day 5 non-null int64
Year 5 non-null int64
Active 5 non-null object
dtypes: int64(4), object(6)
memory usage: 480.0+ bytes
比如可以通過astype()將第一列的數(shù)據(jù)轉(zhuǎn)化為整數(shù)int類型
df['Customer Number'].astype("int") # 這樣的操作并沒有改變原始的數(shù)據(jù)框,而只是返回的一個拷貝
0 10002
1 552278
2 23477
3 24900
4 651029
Name: Customer Number, dtype: int32
# 想要真正的改變數(shù)據(jù)框,通常需要通過賦值來進行,比如 df["Customer Number"] = df["Customer Number"].astype("int") print(df) print("--------"*10) print(df.dtypes)
Customer Number Customer Name 2016 2017 \
0 10002 Quest Industries $125,000.00 $162,500.00
1 552278 Smith Plumbing $920,000.00 $1,012,000.00
2 23477 ACME Industrial $50,000.00 $62,500.00
3 24900 Brekke LTD $350,000.00 $490,000.00
4 651029 Harbor Co $15,000.00 $12,750.00Percent Growth Jan Units Month Day Year Active
0 30.00% 500 1 10 2015 Y
1 10.00% 700 6 15 2014 Y
2 25.00% 125 3 29 2016 Y
3 4.00% 75 10 27 2015 Y
4 -15.00% Closed 2 2 2014 N
--------------------------------------------------------------------------------
Customer Number int32
Customer Name object
2016 object
2017 object
Percent Growth object
Jan Units object
Month int64
Day int64
Year int64
Active object
dtype: object
# 通過賦值在原始的數(shù)據(jù)框基礎(chǔ)上進行了數(shù)據(jù)轉(zhuǎn)化,可以重新看一下我們新生成的數(shù)據(jù)框 print(df)
Customer Number Customer Name 2016 2017 \
0 10002 Quest Industries $125,000.00 $162,500.00
1 552278 Smith Plumbing $920,000.00 $1,012,000.00
2 23477 ACME Industrial $50,000.00 $62,500.00
3 24900 Brekke LTD $350,000.00 $490,000.00
4 651029 Harbor Co $15,000.00 $12,750.00Percent Growth Jan Units Month Day Year Active
0 30.00% 500 1 10 2015 Y
1 10.00% 700 6 15 2014 Y
2 25.00% 125 3 29 2016 Y
3 4.00% 75 10 27 2015 Y
4 -15.00% Closed 2 2 2014 N
# 然后像2016,2017 Percent Growth,Jan Units 這幾列帶有特殊符號的object是不能直接通過astype("flaot)方法進行轉(zhuǎn)化的, # 這與python中的字符串轉(zhuǎn)化為浮點數(shù),都要求原始的字符都只能含有數(shù)字本身,不能含有其他的特殊字符 # 我們可以試著將將Active列轉(zhuǎn)化為布爾值,看一下到底會發(fā)生什么,五個結(jié)果全是True,說明并沒有起到什么作用 #df["Active"].astype("bool") df['2016'].astype('float')
ValueError Traceback (most recent call last)in () ----> 1 df['2016'].astype('float') C:\Anaconda3\lib\site-packages\pandas\core\generic.py in astype(self, dtype, copy, raise_on_error, **kwargs) 3052 # else, only a single dtype is given 3053 new_data = self._data.astype(dtype=dtype, copy=copy, -> 3054 raise_on_error=raise_on_error, **kwargs) 3055 return self._constructor(new_data).__finalize__(self) 3056 C:\Anaconda3\lib\site-packages\pandas\core\internals.py in astype(self, dtype, **kwargs) 3187 3188 def astype(self, dtype, **kwargs): -> 3189 return self.apply('astype', dtype=dtype, **kwargs) 3190 3191 def convert(self, **kwargs): C:\Anaconda3\lib\site-packages\pandas\core\internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs) 3054 3055 kwargs['mgr'] = self -> 3056 applied = getattr(b, f)(**kwargs) 3057 result_blocks = _extend_blocks(applied, result_blocks) 3058 C:\Anaconda3\lib\site-packages\pandas\core\internals.py in astype(self, dtype, copy, raise_on_error, values, **kwargs) 459 **kwargs): 460 return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, --> 461 values=values, **kwargs) 462 463 def _astype(self, dtype, copy=False, raise_on_error=True, values=None, C:\Anaconda3\lib\site-packages\pandas\core\internals.py in _astype(self, dtype, copy, raise_on_error, values, klass, mgr, **kwargs) 502 503 # _astype_nansafe works fine with 1-d only --> 504 values = _astype_nansafe(values.ravel(), dtype, copy=True) 505 values = values.reshape(self.shape) 506 C:\Anaconda3\lib\site-packages\pandas\types\cast.py in _astype_nansafe(arr, dtype, copy) 535 536 if copy: --> 537 return arr.astype(dtype) 538 return arr.view(dtype) 539 ValueError: could not convert string to float: '$15,000.00 '
以上的問題說明了一些問題
如果數(shù)據(jù)是純凈的數(shù)據(jù),可以轉(zhuǎn)化為數(shù)字
astype基本也就是兩種用作,數(shù)字轉(zhuǎn)化為單純字符串,單純數(shù)字的字符串轉(zhuǎn)化為數(shù)字,含有其他的非數(shù)字的字符串是不能通過astype進行轉(zhuǎn)化的。
需要引入其他的方法進行轉(zhuǎn)化,也就有了下面的自定義函數(shù)方法
通過下面的函數(shù)可以將貨幣進行轉(zhuǎn)化
def convert_currency(var): """ convert the string number to a float _ 去除$ - 去除逗號, - 轉(zhuǎn)化為浮點數(shù)類型 """ new_value = var.replace(",","").replace("$","") return float(new_value)
# 通過replace函數(shù)將$以及逗號去掉,然后字符串轉(zhuǎn)化為浮點數(shù),讓pandas選擇pandas認為合適的特定類型,float或者int,該例子中將數(shù)據(jù)轉(zhuǎn)化為了float64 # 通過pandas中的apply函數(shù)將2016列中的數(shù)據(jù)全部轉(zhuǎn)化 df["2016"].apply(convert_currency)
0 125000.0
1 920000.0
2 50000.0
3 350000.0
4 15000.0
Name: 2016, dtype: float64
# 當(dāng)然可以通過lambda 函數(shù)將這個比較簡單的函數(shù)一行帶過 df["2016"].apply(lambda x: x.replace(",","").replace("$","")).astype("float64")
0 125000.0
1 920000.0
2 50000.0
3 350000.0
4 15000.0
Name: 2016, dtype: float64
#同樣可以利用lambda表達式將PercentGrowth進行數(shù)據(jù)清理 df["Percent Growth"].apply(lambda x: x.replace("%","")).astype("float")/100
0 0.30
1 0.10
2 0.25
3 0.04
4 -0.15
Name: Percent Growth, dtype: float64
# 同樣可以通過自定義函數(shù)進行解決,結(jié)果同上 # 最后一個自定義函數(shù)是利用np.where() function 將Active 列轉(zhuǎn)化為布爾值。 df["Active"] = np.where(df["Active"] == "Y", True, False) df["Active"]
0 True
1 True
2 True
3 True
4 False
Name: Active, dtype: bool
# 此時可查看一下數(shù)據(jù)格式 df["2016"]=df["2016"].apply(lambda x: x.replace(",","").replace("$","")).astype("float64") df["2017"]=df["2017"].apply(lambda x: x.replace(",","").replace("$","")).astype("float64") df["Percent Growth"]=df["Percent Growth"].apply(lambda x: x.replace("%","")).astype("float")/100 df.dtypes
Customer Number int32
Customer Name object
2016 float64
2017 float64
Percent Growth float64
Jan Units object
Month int64
Day int64
Year int64
Active bool
dtype: object
# 再次查看DataFrame # 此時只有Jan Units中格式需要轉(zhuǎn)化,以及年月日的合并,可以利用pandas中自帶的幾個函數(shù)進行處理 print(df)
Customer Number Customer Name 2016 2017 Percent Growth \
0 10002 Quest Industries 125000.0 162500.0 0.30
1 552278 Smith Plumbing 920000.0 1012000.0 0.10
2 23477 ACME Industrial 50000.0 62500.0 0.25
3 24900 Brekke LTD 350000.0 490000.0 0.04
4 651029 Harbor Co 15000.0 12750.0 -0.15Jan Units Month Day Year Active
0 500 1 10 2015 True
1 700 6 15 2014 True
2 125 3 29 2016 True
3 75 10 27 2015 True
4 Closed 2 2 2014 False
# pandas中pd.to_numeric()處理Jan Units中的數(shù)據(jù) pd.to_numeric(df["Jan Units"],errors='coerce').fillna(0)
0 500.0
1 700.0
2 125.0
3 75.0
4 0.0
Name: Jan Units, dtype: float64
# 最后利用pd.to_datatime()將年月日進行合并 pd.to_datetime(df[['Month', 'Day', 'Year']])
0 2015-01-10
1 2014-06-15
2 2016-03-29
3 2015-10-27
4 2014-02-02
dtype: datetime64[ns]
# 做到這里不要忘記重新賦值,否則原始數(shù)據(jù)并沒有變化 df["Jan Units"] = pd.to_numeric(df["Jan Units"],errors='coerce') df["Start_date"] = pd.to_datetime(df[['Month', 'Day', 'Year']])
Customer Number | Customer Name | 2016 | 2017 | Percent Growth | Jan Units | Month | Day | Year | Active | Start_date | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10002 | Quest Industries | 125000.0 | 162500.0 | 0.30 | 500.0 | 1 | 10 | 2015 | True | 2015-01-10 |
1 | 552278 | Smith Plumbing | 920000.0 | 1012000.0 | 0.10 | 700.0 | 6 | 15 | 2014 | True | 2014-06-15 |
2 | 23477 | ACME Industrial | 50000.0 | 62500.0 | 0.25 | 125.0 | 3 | 29 | 2016 | True | 2016-03-29 |
3 | 24900 | Brekke LTD | 350000.0 | 490000.0 | 0.04 | 75.0 | 10 | 27 | 2015 | True | 2015-10-27 |
4 | 651029 | Harbor Co | 15000.0 | 12750.0 | -0.15 | NaN | 2 | 2 | 2014 | False | 2014-02-02 |
df.dtypes
Customer Number int32
Customer Name object
2016 float64
2017 float64
Percent Growth float64
Jan Units float64
Month int64
Day int64
Year int64
Active bool
Start_date datetime64[ns]
dtype: object
# 將這些轉(zhuǎn)化整合在一起 def convert_percent(val): """ Convert the percentage string to an actual floating point percent - Remove % - Divide by 100 to make decimal """ new_val = val.replace('%', '') return float(new_val) / 100 df_2 = pd.read_csv("sales_data_types.csv",dtype={"Customer_Number":"int"},converters={ "2016":convert_currency, "2017":convert_currency, "Percent Growth":convert_percent, "Jan Units":lambda x:pd.to_numeric(x,errors="coerce"), "Active":lambda x: np.where(x=="Y",True,False) })
df_2.dtypes
Customer Number int64
Customer Name object
2016 float64
2017 float64
Percent Growth float64
Jan Units float64
Month int64
Day int64
Year int64
Active bool
dtype: object
df_2
Customer Number | Customer Name | 2016 | 2017 | Percent Growth | Jan Units | Month | Day | Year | Active | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 10002 | Quest Industries | 125000.0 | 162500.0 | 0.30 | 500.0 | 1 | 10 | 2015 | True |
1 | 552278 | Smith Plumbing | 920000.0 | 1012000.0 | 0.10 | 700.0 | 6 | 15 | 2014 | True |
2 | 23477 | ACME Industrial | 50000.0 | 62500.0 | 0.25 | 125.0 | 3 | 29 | 2016 | True |
3 | 24900 | Brekke LTD | 350000.0 | 490000.0 | 0.04 | 75.0 | 10 | 27 | 2015 | True |
4 | 651029 | Harbor Co | 15000.0 | 12750.0 | -0.15 | NaN | 2 | 2 | 2014 | False |
至此,pandas里面數(shù)據(jù)類型目前還有timedelta以及category兩個,之后會著重介紹category類型,這是類型是參考了R中的category設(shè)計的,在pandas 0.16 之后添加的,之后還會根據(jù)需要進行整理pandas的常用方法。
關(guān)于使用pandas怎么對據(jù)類型進行轉(zhuǎn)換問題的解答就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道了解更多相關(guān)知識。