我們提供的服務(wù)有:
做網(wǎng)站、網(wǎng)站制作、微信公眾號(hào)開發(fā)、網(wǎng)站優(yōu)化、網(wǎng)站認(rèn)證、
南開ssl等。為數(shù)千家企事業(yè)單位解決了網(wǎng)站和推廣的問題。提供周到的售前咨詢和貼心的售后服務(wù),是有科學(xué)管理、有技術(shù)的
南開網(wǎng)站制作公司
原文鏈接:http://www.xperseverance.net/blogs/2013/07/2124/ 大部分文章來自:http://www.socher.org/http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial包括從他們里面的論文里找到的related work
Word Embedding LearnigSENNA原始論文【ACL'07】Fast Semantic Extraction Using a Novel Neural Network ArchitectureRonan Collobert and Jason Weston【ICML'08】A unified architecture for natural language processing: deep neural networks with multitask learningJoseph Turian, et al.【ACL'10】Word representations:A simple and general method for semi-supervised learningAntoine Bordes, et al. 【AAAI'11】Learning Structured Embeddings of Knowledge BasesRonan Collobert, et al.【JMLR'12】Natural Language Processing (Almost) from ScratchEric H. Huang, et al.【ACL'12】Improving Word Representations via Global Context and Multiple Word PrototypesT. Mikolov, et al.【HLT-NAACL'13】Linguistic regularities in continuous spaceword representationsYoshua Bengio et al,【13】 Representation Learning: A Review and New Perspectives
Semi-supervised learning of compact document representations with deep networks
Language ModelY. Bengio, et al. Neural probabilistic language model博士論文:Statistical Language Models based on Neural Networks 這人貌似在ICASSP上有個(gè)文章T Mikolov Statistical Language Models Based on Neural Networks
Sentiment【HLT'11】Learning word vectors for sentiment analysis【EMNLP'11】Semi-supervised recursive autoencoders for predicting sentiment distributions【NAACL'13】 Discourse Connectors for Latent Subjectivity in Sentiment Analysis
other NLP以下內(nèi)容見socher主頁P(yáng)arsing with Compositional Vector Grammars
目測(cè)今年ACL best paper候選哦Better Word Representations with Recursive Neural Networks for Morphology
Semantic Compositionality through Recursive Matrix-Vector Spaces
Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
Parsing Natural Scenes and Natural Language with Recursive Neural Networks
Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural NetworksJoint Learning of Words and Meaning Representations for Open-Text Semantic Parsing
TutorialsRonan Collobert and Jason Weston【NIPS'09】Deep Learning for Natural Language ProcessingRichard Socher, et al.【NAACL'13】【ACL'12】Deep Learning for NLPYoshua Bengio【ICML'12】Representation LearningLeon Bottou, Natural language processing and weak supervision
Yoshua Bengio最新AAAI 2013 tutorial:http://www.iro.umontreal.ca/~bengioy/talks/aaai2013-tutorial.pdf
網(wǎng)站標(biāo)題:轉(zhuǎn)DeepLearningforNLP文章列舉-創(chuàng)新互聯(lián)
URL分享:
http://weahome.cn/article/diessi.html