真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

為什么會用不好Numpy的random函數(shù)-創(chuàng)新互聯(lián)

這期內(nèi)容當中小編將會給大家?guī)碛嘘P(guān)為什么會用不好Numpy的random函數(shù),文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

創(chuàng)新互聯(lián)網(wǎng)站建設(shè)公司是一家服務多年做網(wǎng)站建設(shè)策劃設(shè)計制作的公司,為廣大用戶提供了做網(wǎng)站、成都網(wǎng)站建設(shè),成都網(wǎng)站設(shè)計,廣告投放,成都做網(wǎng)站選創(chuàng)新互聯(lián),貼合企業(yè)需求,高性價比,滿足客戶不同層次的需求一站式服務歡迎致電。

在python數(shù)據(jù)分析的學習和應用過程中,經(jīng)常需要用到numpy的隨機函數(shù),由于隨機函數(shù)random的功能比較多,經(jīng)常會混淆或記不住,下面我們一起來匯總學習下。

1.         import numpy as np

1 numpy.random.rand()

numpy.random.rand(d0,d1,...,dn)

  • rand函數(shù)根據(jù)給定維度生成[0,1)之間的數(shù)據(jù),包含0,不包含1

  • dn表格每個維度

  • 返回值為指定維度的array

1.         np.random.rand(4,2)

1.         array([[ 0.02173903,  0.44376568],

2.                [ 0.25309942,  0.85259262],

3.                [ 0.56465709,  0.95135013],

4.                [ 0.14145746,  0.55389458]])

1.         np.random.rand(4,3,2) # shape: 4*3*2

1.         array([[[ 0.08256277,  0.11408276],

2.                 [ 0.11182496,  0.51452019],

3.                 [ 0.09731856,  0.18279204]],

4.          

5.                [[ 0.74637005,  0.76065562],

6.                 [ 0.32060311,  0.69410458],

7.                 [ 0.28890543,  0.68532579]],

8.          

9.                [[ 0.72110169,  0.52517524],

10.              [ 0.32876607,  0.66632414],

11.              [ 0.45762399,  0.49176764]],

12.       

13.             [[ 0.73886671,  0.81877121],

14.              [ 0.03984658,  0.99454548],

15.              [ 0.18205926,  0.99637823]]])

2 numpy.random.randn()

numpy.random.randn(d0,d1,...,dn)

  • randn函數(shù)返回一個或一組樣本,具有標準正態(tài)分布。

  • dn表格每個維度

  • 返回值為指定維度的array

1.         np.random.randn() # 當沒有參數(shù)時,返回單個數(shù)據(jù)

1.         -1.1241580894939212

1.         np.random.randn(2,4)

1.         array([[ 0.27795239, -2.57882503,  0.3817649 ,  1.42367345],

2.                [-1.16724625, -0.22408299,  0.63006614, -0.41714538]])

1.         np.random.randn(4,3,2)

1.         array([[[ 1.27820764,  0.92479163],

2.                 [-0.15151257,  1.3428253 ],

3.                 [-1.30948998,  0.15493686]],

4.          

5.                [[-1.49645411, -0.27724089],

6.                 [ 0.71590275,  0.81377671],

7.                 [-0.71833341,  1.61637676]],

8.          

9.                [[ 0.52486563, -1.7345101 ],

10.              [ 1.24456943, -0.10902915],

11.              [ 1.27292735, -0.00926068]],

12.       

13.             [[ 0.88303   ,  0.46116413],

14.              [ 0.13305507,  2.44968809],

15.              [-0.73132153, -0.88586716]]])

標準正態(tài)分布介紹

  • 標準正態(tài)分布---standard normal distribution

  • 標準正態(tài)分布又稱為u分布,是以0為均值、以1為標準差的正態(tài)分布,記為N(0,1)。

3 numpy.random.randint()

3.1 numpy.random.randint()

numpy.random.randint(low, high=None, size=None, dtype='l')

  • 返回隨機整數(shù),范圍區(qū)間為[low,high),包含low,不包含high

  • 參數(shù):low為最小值,high為大值,size為數(shù)組維度大小,dtype為數(shù)據(jù)類型,默認的數(shù)據(jù)類型是np.int

  • high沒有填寫時,默認生成隨機數(shù)的范圍是[0,low)

1.         np.random.randint(1,size=5) # 返回[0,1)之間的整數(shù),所以只有0

1.         array([0, 0, 0, 0, 0])

1.         np.random.randint(1,5) # 返回1個[1,5)時間的隨機整數(shù)

1.         4

1.         np.random.randint(-5,5,size=(2,2))

1.         array([[ 2, -1],

2.                [ 2,  0]])

3.2 numpy.random.random_integers

numpy.random.random_integers(low, high=None, size=None)

  • 返回隨機整數(shù),范圍區(qū)間為[low,high],包含low和high

  • 參數(shù):low為最小值,high為大值,size為數(shù)組維度大小

  • high沒有填寫時,默認生成隨機數(shù)的范圍是[1,low]

該函數(shù)在最新的numpy版本中已被替代,建議使用randint函數(shù)

1.         np.random.random_integers(1,size=5)

1.         array([1, 1, 1, 1, 1])

4 生成[0,1)之間的浮點數(shù)

  • numpy.random.random_sample(size=None)

  • numpy.random.random(size=None)

  • numpy.random.ranf(size=None)

  • numpy.random.sample(size=None)

1.         print('-----------random_sample--------------')

2.         print(np.random.random_sample(size=(2,2)))

3.         print('-----------random--------------')

4.         print(np.random.random(size=(2,2)))

5.         print('-----------ranf--------------')

6.         print(np.random.ranf(size=(2,2)))

7.         print('-----------sample--------------')

8.         print(np.random.sample(size=(2,2)))

1.         -----------random_sample--------------

2.         [[ 0.34966859  0.85655008]

3.          [ 0.16045328  0.87908218]]

4.         -----------random--------------

5.         [[ 0.25303772  0.45417512]

6.          [ 0.76053763  0.12454433]]

7.         -----------ranf--------------

8.         [[ 0.0379055   0.51288667]

9.          [ 0.71819639  0.97292903]]

10.      -----------sample--------------

11.      [[ 0.59942807  0.80211491]

12.       [ 0.36233939  0.12607092]]

5 numpy.random.choice()

numpy.random.choice(a, size=None, replace=True, p=None)

  • 從給定的一維數(shù)組中生成隨機數(shù)

  • 參數(shù): a為一維數(shù)組類似數(shù)據(jù)或整數(shù);size為數(shù)組維度;p為數(shù)組中的數(shù)據(jù)出現(xiàn)的概率

  • a為整數(shù)時,對應的一維數(shù)組為np.arange(a)

1.         np.random.choice(5,3)

1.         array([4, 1, 4])

1.         np.random.choice(5, 3, replace=False)

2.         # 當replace為False時,生成的隨機數(shù)不能有重復的數(shù)值

1.         array([0, 3, 1])

1.         np.random.choice(5,size=(3,2))

1.         array([[1, 0],

2.                [4, 2],

3.                [3, 3]])

1.         demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']

2.         np.random.choice(demo_list,size=(3,3))

1.         array([['moto', 'iphone', 'xiaomi'],

2.                ['lenovo', 'xiaomi', 'xiaomi'],

3.                ['xiaomi', 'lenovo', 'iphone']],

4.               dtype='

  • 參數(shù)p的長度與參數(shù)a的長度需要一致;

  • 參數(shù)p為概率,p里的數(shù)據(jù)之和應為1

1.         demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']

2.         np.random.choice(demo_list,size=(3,3), p=[0.1,0.6,0.1,0.1,0.1])

1.         array([['sansumg', 'sansumg', 'sansumg'],

2.                ['sansumg', 'sansumg', 'sansumg'],

3.                ['sansumg', 'xiaomi', 'iphone']],

4.               dtype='

6 numpy.random.seed()

  • np.random.seed()的作用:使得隨機數(shù)據(jù)可預測。

  • 當我們設(shè)置相同的seed,每次生成的隨機數(shù)相同。如果不設(shè)置seed,則每次會生成不同的隨機數(shù)

1.         np.random.seed(0)

2.         np.random.rand(5)

1.         array([ 0.5488135 ,  0.71518937,  0.60276338,  0.54488318,  0.4236548 ])

1.         np.random.seed(1676)

2.         np.random.rand(5)

1.         array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])

1.         np.random.seed(1676)

2.         np.random.rand(5)

1.         array([ 0.39983389,  0.29426895,  0.89541728,  0.71807369,  0.3531823 ])    

上述就是小編為大家分享的為什么會用不好Numpy的random函數(shù)了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)-成都網(wǎng)站建設(shè)公司行業(yè)資訊頻道。


分享標題:為什么會用不好Numpy的random函數(shù)-創(chuàng)新互聯(lián)
URL分享:http://weahome.cn/article/djdhcc.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部