本文為大家分享了Python機(jī)器學(xué)習(xí)之K-Means聚類的實(shí)現(xiàn)代碼,供大家參考,具體內(nèi)容如下
創(chuàng)新互聯(lián)公司主要從事網(wǎng)頁設(shè)計(jì)、PC網(wǎng)站建設(shè)(電腦版網(wǎng)站建設(shè))、wap網(wǎng)站建設(shè)(手機(jī)版網(wǎng)站建設(shè))、響應(yīng)式網(wǎng)站開發(fā)、程序開發(fā)、網(wǎng)站優(yōu)化、微網(wǎng)站、小程序制作等,憑借多年來在互聯(lián)網(wǎng)的打拼,我們?cè)诨ヂ?lián)網(wǎng)網(wǎng)站建設(shè)行業(yè)積累了豐富的成都網(wǎng)站建設(shè)、做網(wǎng)站、網(wǎng)站設(shè)計(jì)、網(wǎng)絡(luò)營(yíng)銷經(jīng)驗(yàn),集策劃、開發(fā)、設(shè)計(jì)、營(yíng)銷、管理等多方位專業(yè)化運(yùn)作于一體。1.K-Means聚類原理
K-means算法是很典型的基于距離的聚類算法,采用距離作為相似性的評(píng)價(jià)指標(biāo),即認(rèn)為兩個(gè)對(duì)象的距離越近,其相似度就越大。其基本思想是:以空間中k個(gè)點(diǎn)為中心進(jìn)行聚類,對(duì)最靠近他們的對(duì)象歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結(jié)果。各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
算法大致流程為:(1)隨機(jī)選取k個(gè)點(diǎn)作為種子點(diǎn)(這k個(gè)點(diǎn)不一定屬于數(shù)據(jù)集);(2)分別計(jì)算每個(gè)數(shù)據(jù)點(diǎn)到k個(gè)種子點(diǎn)的距離,離哪個(gè)種子點(diǎn)最近,就屬于哪類;(3)重新計(jì)算k個(gè)種子點(diǎn)的坐標(biāo)(簡(jiǎn)單常用的方法是求坐標(biāo)值的平均值作為新的坐標(biāo)值;(4)重復(fù)2、3步,直到種子點(diǎn)坐標(biāo)不變或者循環(huán)次數(shù)完成。
2.數(shù)據(jù)及其尋找初步的聚類中心
數(shù)據(jù)為Matlab加載格式(mat),包含X變量,數(shù)據(jù)來源為(大家可以去這下載),X為300*2維變量,由于是2維,所以基本上就是在平面坐標(biāo)軸上的一些點(diǎn)中進(jìn)行聚類。
我們首先構(gòu)建初步尋找聚類中心(centroids,質(zhì)心)函數(shù),再隨機(jī)設(shè)置初始質(zhì)心,通過歐氏距離初步判斷X的每一個(gè)變量屬于哪個(gè)質(zhì)心。代碼為:
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from scipy.io import loadmat def find_closest_centroids(X, centroids): m = X.shape[0] k = centroids.shape[0] #要聚類的類別個(gè)數(shù) idx = np.zeros(m) for i in range(m): min_dist = 1000000 #迭代終止條件 for j in range(k): dist = np.sum((X[i,:] - centroids[j,:]) ** 2) if dist < min_dist: # 記錄當(dāng)前最短距離和其中心的索引值 min_dist = dist idx[i] = j return idx data = loadmat('D:\python\Python ml\ex7data2.mat') X = data['X'] initial_centroids = np.array([[3, 3], [6, 2], [8, 5]]) idx = find_closest_centroids(X, initial_centroids) idx[0:3]