在Python中,random模塊用于生成隨機(jī)數(shù)。下面介紹下random模塊中常用的幾個函數(shù)
創(chuàng)新互聯(lián)-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價比道里網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式道里網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋道里地區(qū)。費用合理售后完善,十余年實體公司更值得信賴。
01
打開我們python的ide
02
在打開的shell中,首先需要導(dǎo)入random庫,才可以使用random中的方法,首先介紹下應(yīng)用最多的函數(shù),random.random(),可以生成一個0到1的隨機(jī)符點數(shù)
03
random.uniform(a,b)函數(shù),生成指定范圍內(nèi)的隨機(jī)符點數(shù),如下圖
04
random.randint(a,b)函數(shù),生成一個指定范圍內(nèi)的整數(shù),如下圖
05
random.choice(sqe)函數(shù),從sqe序列中得到一個隨機(jī)元素,如下圖,序列元素可以包含很多種類,集合,列表,甚至元組都可以作為參數(shù)進(jìn)行傳遞
在Python中可以用于隨機(jī)數(shù)生成的有兩種主要途徑,一是random模塊,另一個是numpy庫中random函數(shù)。
在我們?nèi)粘J褂弥?,如果是為了得到隨機(jī)的單個數(shù),多考慮random模塊;如果是為了得到隨機(jī)小數(shù)或者整數(shù)的矩陣,就多考慮numpy中的random函數(shù),當(dāng)然numpy也可以的到隨機(jī)的單個數(shù)
一、random模塊
二、numpy庫中random函數(shù)
random模塊中將近有7個函數(shù)都是可以用來生成隨機(jī)數(shù)的:
作用:隨機(jī)生成一個 [0,1) 的浮點數(shù)
作用:隨機(jī)生成一個 [a,b) 的浮點數(shù)
作用:隨機(jī)生成一個 [a,b] 的整數(shù)
作用:從列表,元組,字符串、集合(可用于for循環(huán)的數(shù)據(jù)類型)中隨機(jī)選擇一個元素
作用:在生成的以a為始,每step遞增,以b為終這樣的一個整數(shù)序列中隨機(jī)選擇一個數(shù)
作用:打亂一個列表的元素順序
從序列population中隨機(jī)取出k個數(shù);population的類型可以是列表、元組、集合、字符串;
在Numpy庫中,常用使用np.random.rand()、np.random.randn()和np.random.randint()隨機(jī)函數(shù)。
作用:返回一個或一組服從標(biāo)準(zhǔn)正態(tài)分布的隨機(jī)樣本值
備注:標(biāo)準(zhǔn)正態(tài)分布是以0為均數(shù)、以1為標(biāo)準(zhǔn)差的正態(tài)分布,記為N(0,1)。對應(yīng)的正態(tài)分布曲線如下所示,即
作用:使用方法與np.random.randn()函數(shù)相同 ,通過本函數(shù)可以返回一個或一組服從“0~1”均勻分布的隨機(jī)樣本值。隨機(jī)樣本取值范圍是[0,1),不包括1
numpy.random.randint(low, high=None, size=None, dtype='l')
輸入:
low—–為最小值
high—-為最大值
size—–為數(shù)組維度大小
dtype—為數(shù)據(jù)類型,默認(rèn)的數(shù)據(jù)類型是np.int。
作用: 返回隨機(jī)整數(shù)或整型數(shù)組,范圍區(qū)間為[low,high),包含low,不包含high; high沒有填寫時,默認(rèn)生成隨機(jī)數(shù)的范圍是[0,low
np.random.random([size])
作用:生成[0,1)之間的浮點數(shù),與np.random.rand()功能類似
np.random.choice(a,[ size, replace, p])
參考文檔1: 【python】numpy之random庫簡單的隨機(jī)數(shù)據(jù)生成.rand()、.randint()、.randn()、.random()等(一)
參考文檔2: Python中隨機(jī)數(shù)的生成
參考文檔3: numpy.random模塊常用函數(shù)
終于寫完了,我以為它很簡單的………………預(yù)計1小時,結(jié)果寫了2.5小時
在python中用于生成隨機(jī)數(shù)的模塊是random,在使用前需要import
random.random:
random.random():生成一個0-1之間的隨機(jī)浮點數(shù).例:
[python] view plain copy
import random
print random.random()
# 0.87594424128
random.uniform
random.uniform(a, b):生成[a,b]之間的浮點數(shù).例:
[python] view plain copy
import random
print random.uniform(0, 10)
# 5.27462570463
random.ranint
random.randint(a, b):生成[a,b]之間的整數(shù).例:
[python] view plain copy
import random
print random.randint(0, 10)
# 8
random.randrange
random.randrange(a, b, step):在指定的集合[a,b)中,以step為基數(shù)隨機(jī)取一個數(shù).如random.randrange(0, 20, 2),相當(dāng)于從[0,2,4,6,...,18]中隨機(jī)取一個.例:
[python] view plain copy
import random
print random.randrange(0, 20, 2)
# 14
1 從給定參數(shù)的正態(tài)分布中生成隨機(jī)數(shù)
當(dāng)考慮從正態(tài)分布中生成隨機(jī)數(shù)時,應(yīng)當(dāng)首先知道正態(tài)分布的均值和方差(標(biāo)準(zhǔn)差),有了這些,就可以調(diào)用python中現(xiàn)有的模塊和函數(shù)來生成隨機(jī)數(shù)了。這里調(diào)用了Numpy模塊中的random.normal函數(shù),由于邏輯非參簡單,所有直接貼上代碼如下:
import numpy as np# 定義從正態(tài)分布中獲取隨機(jī)數(shù)的函數(shù)def get_normal_random_number(loc, scale): """ :param loc: 正態(tài)分布的均值 :param scale: 正態(tài)分布的標(biāo)準(zhǔn)差 :return:從正態(tài)分布中產(chǎn)生的隨機(jī)數(shù) """ # 正態(tài)分布中的隨機(jī)數(shù)生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模塊if __name__ == "__main__": # 函數(shù)調(diào)用 n = get_normal_random_number(loc=2, scale=2) # 打印結(jié)果 print(n) # 結(jié)果:3.275192443463058
2 從給定參數(shù)的均勻分布中獲取隨機(jī)數(shù)的函數(shù)
考慮從均勻分布中獲取隨機(jī)數(shù)的時候,要事先知道均勻分布的下界和上界,然后調(diào)用Numpy模塊的random.uniform函數(shù)生成隨機(jī)數(shù)。
import numpy as np# 定義從均勻分布中獲取隨機(jī)數(shù)的函數(shù)def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產(chǎn)生的隨機(jī)數(shù) """ # 均勻分布的隨機(jī)數(shù)生成 number = np.random.uniform(low, high) # 返回值 return number# 主模塊if __name__ == "__main__": # 函數(shù)調(diào)用 n = get_uniform_random_number(low=2, high=4) # 打印結(jié)果 print(n) # 結(jié)果:2.4462417140153114
3 按照指定概率生成隨機(jī)數(shù)
有時候我們需要按照指定的概率生成隨機(jī)數(shù),比如已知盒子中每種顏色的球的比例,猜測下一次取出的球的顏色。在這里介紹的問題和上面的例子相似,要求給定一個概率列表,從列表對應(yīng)的數(shù)字列表或區(qū)間列表中生成隨機(jī)數(shù),分兩部分討論。
3.1 按照指定概率從數(shù)字列表中隨機(jī)抽取數(shù)字
假設(shè)給定一個數(shù)字列表和一個與之對應(yīng)的概率列表,兩個列表對應(yīng)位置的元素組成的元組即表示該數(shù)字在數(shù)字列表中以多大的概率出現(xiàn),那么如何根據(jù)這些已知條件從數(shù)字列表中按概率抽取隨機(jī)數(shù)呢?在這里我們考慮用均勻分布來模擬概率,代碼如下:
import numpy as npimport random# 定義從均勻分布中獲取隨機(jī)數(shù)的函數(shù)def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產(chǎn)生的隨機(jī)數(shù) """ # 均勻分布的隨機(jī)數(shù)生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從一個數(shù)字列表中以一定的概率取出對應(yīng)區(qū)間中數(shù)字的函數(shù)def get_number_by_pro(number_list, pro_list): """ :param number_list:數(shù)字列表 :param pro_list:數(shù)字對應(yīng)的概率列表 :return:按概率從數(shù)字列表中抽取的數(shù)字 """ # 用均勻分布中的樣本值來模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可迭代對象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 返回值 return number# 主模塊if __name__ == "__main__": # 數(shù)字列表 num_list = [1, 2, 3, 4, 5] # 對應(yīng)的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數(shù)調(diào)用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印結(jié)果 print(n) # 結(jié)果:1
3.2 按照指定概率從區(qū)間列表中的某個區(qū)間內(nèi)生成隨機(jī)數(shù)
給定一個區(qū)間列表和一個與之對應(yīng)的概率列表,兩個列表相應(yīng)位置的元素組成的元組即表示某數(shù)字出現(xiàn)在某區(qū)間內(nèi)的概率是多少,已知這些,我們?nèi)绾紊呻S機(jī)數(shù)呢?這里我們通過兩次使用均勻分布達(dá)到目的,代碼如下:
import numpy as npimport random# 定義從均勻分布中獲取隨機(jī)數(shù)的函數(shù)def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產(chǎn)生的隨機(jī)數(shù) """ # 均勻分布的隨機(jī)數(shù)生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從一個數(shù)字列表中以一定的概率取出對應(yīng)區(qū)間中數(shù)字的函數(shù)def get_number_by_pro(number_list, pro_list): """ :param number_list:數(shù)字列表 :param pro_list:數(shù)字對應(yīng)的概率列表 :return:按概率從數(shù)字列表中抽取的數(shù)字 """ # 用均勻分布中的樣本值來模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可迭代對象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 從區(qū)間[number. number - 1]上隨機(jī)抽取一個值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模塊if __name__ == "__main__": # 數(shù)字列表 num_list = [1, 2, 3, 4, 5] # 對應(yīng)的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數(shù)調(diào)用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印結(jié)果 print(n) # 結(jié)果:3.49683787011193
Random意思是返回一個0~num-1之間的隨機(jī)數(shù)。?random(num)是在stdlib.h中的一個宏定義。num和函數(shù)返回值都是整型數(shù)。
如需要在一個random()序列上生成真正意義的隨機(jī)數(shù),在執(zhí)行其子序列時使用randomSeed()函數(shù)預(yù)設(shè)一個絕對的隨機(jī)輸入,例如在一個斷開引腳上的analogRead()函數(shù)的返回值。
Random的作用
Random使用之前需要使用Randomize語句進(jìn)行隨機(jī)數(shù)種子的初始化。RANDOM產(chǎn)生的是偽隨機(jī)數(shù)或者說是用一種復(fù)雜的方法計算得到的序列值,因此每次運算時需要一個不同的種子值。種子值不同,得到的序列值也不同。因此也就是真正的隨機(jī)數(shù)了。
RANDOM產(chǎn)生的是偽隨機(jī)數(shù)或者說是用一種復(fù)雜的方法計算得到的序列值,因此每次運算時需要一個不同的種子值。種子值不同,得到的序列值也不同。因此也就是真正的隨機(jī)數(shù)了。這也正是RANDOMIZE隨機(jī)初始化的作用。 VB里用 NEW RANDOM()來表示初始化。
python中的randint用來生成隨機(jī)數(shù),在使用randint之前,需要調(diào)用random庫。其表達(dá)是為random.randint(x,y),參數(shù)x和y代表生成隨機(jī)數(shù)的區(qū)間范圍。
random() 函數(shù)命名來源于英文單詞random(隨機(jī))。randint是random + integer拼接簡寫而成,代表隨機(jī)一個整數(shù)。
Python標(biāo)準(zhǔn)庫中的random函數(shù),可以生成隨機(jī)浮點數(shù)、整數(shù)、字符串,甚至幫助你隨機(jī)選擇列表序列中的一個元素,打亂一組數(shù)據(jù)等。
函數(shù)randint的使用
1、OUT = RANDINT
產(chǎn)生一個“ 0 ”或“ 1 ”等概率。
2、OUT = RANDINT(M)
生成的M 矩陣的隨機(jī)二進(jìn)制數(shù)字,“ 0 ”和“ 1 ”出現(xiàn)的概率均等。
3、OUT = RANDINT(M,N)
生成的(M,N) 矩陣的隨機(jī)二進(jìn)制數(shù)字,“ 0 ”和“ 1 ”出現(xiàn)的概率均等。
4、OUT = RANDINT(M,N,RANGE)
生成的(M,N) 矩陣的隨機(jī)二進(jìn)制數(shù)字,RANGE范圍可以是標(biāo)量或向量。
標(biāo)量:為正的話,取值為[0,RANGE-1] ,為負(fù)的話,取值為 [RANGE+1, 0]。
向量:取值為[RANGE(1), RANGE(2)]。
5、OUT = RANDINT(M,N,RANGE,STATE)
resets the state of RAND to STATE。