真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python函數(shù)增強 python函數(shù)的作用增強代碼的可讀性

對于Python 的科學(xué)計算有哪些提高運算速度的技

一:學(xué)會正確使用numpy scipy。 numpy scipy寫好的絕不自己寫,比如矩陣運算等操作,pylab的實現(xiàn)還算不錯。各種函數(shù)都有,盡量使用他們可以避免初學(xué)者大部分的速度不足問題。因為這些函數(shù)大部分都是預(yù)編譯好的。

站在用戶的角度思考問題,與客戶深入溝通,找到曹縣網(wǎng)站設(shè)計與曹縣網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗,讓設(shè)計與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個性化、用戶體驗好的作品,建站類型包括:網(wǎng)站設(shè)計制作、成都網(wǎng)站設(shè)計、企業(yè)官網(wǎng)、英文網(wǎng)站、手機端網(wǎng)站、網(wǎng)站推廣、國際域名空間、雅安服務(wù)器托管、企業(yè)郵箱。業(yè)務(wù)覆蓋曹縣地區(qū)。

根據(jù)我?guī)啄昵暗臏y試,python的矩陣運算速度并不慢,(因為你運行的是動態(tài)鏈接庫里面的函數(shù)而不是腳本)比mathematica快,和matlab持平。

大部分新手不擅長看文檔啥都自己造輪子是不好的。當(dāng)然老手把效率寫的比開源庫高也不算啥新聞,畢竟有對特定程序的優(yōu)化

二:減少for的使用,多使用向量化函數(shù),np.vectorlize可以把函數(shù)變成對數(shù)組逐元素的操作,比for效率高幾個華萊士。

三:對內(nèi)存友好,操作大矩陣的時候減少會引起整矩陣對此copy的操作

四:系統(tǒng)最慢的大部分時候是io,包括上面說的內(nèi)存操作和頻繁的讀入讀出以及debug輸出。避免他們,在需要實時處理的時候引入類似于gpu的pipeline管線機制或者使用靈活的多線程編程可以起到奇效。

五:matplotlib的繪圖效率并不高明,在使用交互繪圖(plt.ion)的時候減少不必要的刷新率。

優(yōu)化Python編程的4個妙招

1. Pandas.apply() – 特征工程瑰寶

Pandas 庫已經(jīng)非常優(yōu)化了,但是大部分人都沒有發(fā)揮它的最大作用。想想它一般會用于數(shù)據(jù)科學(xué)項目中的哪些地方。一般首先能想到的就是特征工程,即用已有特征創(chuàng)造新特征。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函數(shù)。

在Pandas.apply()中,可以傳遞用戶定義功能并將其應(yīng)用到Pandas Series的所有數(shù)據(jù)點中。這個函數(shù)是Pandas庫最好的擴展功能之一,它能根據(jù)所需條件分隔數(shù)據(jù)。之后便能將其有效應(yīng)用到數(shù)據(jù)處理任務(wù)中。

2. Pandas.DataFrame.loc – Python數(shù)據(jù)操作絕妙技巧

所有和數(shù)據(jù)處理打交道的數(shù)據(jù)科學(xué)家(差不多所有人了!)都應(yīng)該學(xué)會這個方法。

很多時候,數(shù)據(jù)科學(xué)家需要根據(jù)一些條件更新數(shù)據(jù)集中某列的某些值。Pandas.DataFrame.loc就是此類問題最優(yōu)的解決方法。

3. Python函數(shù)向量化

另一種解決緩慢循環(huán)的方法就是將函數(shù)向量化。這意味著新建函數(shù)會應(yīng)用于輸入列表,并返回結(jié)果數(shù)組。在Python中使用向量化能至少迭代兩次,從而加速計算。

事實上,這樣不僅能加速代碼運算,還能讓代碼更加簡潔清晰。

4. Python多重處理

多重處理能使系統(tǒng)同時支持一個以上的處理器。

此處將數(shù)據(jù)處理分成多個任務(wù),讓它們各自獨立運行。處理龐大的數(shù)據(jù)集時,即使是apply函數(shù)也顯得有些遲緩。

關(guān)于優(yōu)化Python編程的4個妙招,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關(guān)于python編程的技巧及素材等內(nèi)容,可以點擊本站的其他文章進行學(xué)習(xí)。

python中的intvar()的含義與stringvar()的區(qū)別

一、作用不同

1、intvar():屬于Tkinter下的對象。用于處理整型。

2、stringvar():StringVar并不是python內(nèi)建的對象,而是屬于Tkinter下的對象。

二、值變化不同

1、intvar():不需要跟蹤變量的值的變化。

2、stringvar():需要跟蹤變量的值的變化,以保證值的變更隨時可以顯示在界面上。

三、特點不同

1、intvar():intVar類型調(diào)用get函數(shù)時,先將變量轉(zhuǎn)變成了tuples類型的數(shù)據(jù)。

2、stringvar():StringVar類型調(diào)用set函數(shù)時,先將變量轉(zhuǎn)變成了tuples類型的數(shù)據(jù)。實際上調(diào)用set函數(shù)之前就直接使用Tuples類型的數(shù)據(jù).

參考資料來源:百度百科-Tkinter

參考資料來源:百度百科-Python

如何在Python函數(shù)執(zhí)行前后增加額外的行為

Python發(fā)展到現(xiàn)在,其實不簡單了。 說簡單,只是你自己不夠與時俱進,掌握的都是老式三板斧而已。所以,知識需要不斷更新,才能彌補自己的盲點,以上就是本文的全部內(nèi)容,希望能大家的學(xué)習(xí)或者工作帶來一定的幫助。

數(shù)字圖像處理Python實現(xiàn)圖像灰度變換、直方圖均衡、均值濾波

import CV2

import copy

import numpy as np

import random

使用的是pycharm

因為最近看了《銀翼殺手2049》,里面Joi實在是太好看了所以原圖像就用Joi了

要求是灰度圖像,所以第一步先把圖像轉(zhuǎn)化成灰度圖像

# 讀入原始圖像

img = CV2.imread('joi.jpg')

# 灰度化處理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

第一個任務(wù)是利用分段函數(shù)增強灰度對比,我自己隨便寫了個函數(shù)大致是這樣的

def chng(a):

if a 255/3:

b = a/2

elif a 255/3*2:

b = (a-255/3)*2 + 255/6

else:

b = (a-255/3*2)/2 + 255/6 +255/3*2

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方圖均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H * W * 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S * sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在實現(xiàn)濾波之前先添加高斯噪聲和椒鹽噪聲(代碼來源于網(wǎng)絡(luò))

不知道這個椒鹽噪聲的名字是誰起的感覺隔壁小孩都饞哭了

用到了random.gauss()

percentage是噪聲占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY] 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1)=0.5:

NoiseImg[randX,randY]=0

else:

NoiseImg[randX,randY]=255

return NoiseImg

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

下面開始均值濾波和中值濾波了

就以n x n為例,均值濾波就是用這n x n個像素點灰度值的平均值代替中心點,而中值就是中位數(shù)代替中心點,邊界點周圍補0;前兩個函數(shù)的作用是算出這個點的灰度值,后兩個是對整張圖片進行

#均值濾波模板

def mean_filter(x, y, step, img):

sum_s = 0

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (step*step)

return sum_s

#中值濾波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(step*step/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代碼如下:

if __name__ == "__main__":

# 讀入原始圖像

img = CV2.imread('joi.jpg')

# 灰度化處理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)


本文標(biāo)題:python函數(shù)增強 python函數(shù)的作用增強代碼的可讀性
文章起源:http://weahome.cn/article/dodegie.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部