求擬合函數(shù),首先要有因變量和自變量的一組測試或?qū)嶒?yàn)數(shù)據(jù),根據(jù)已知的曲線y=f(x),擬合出Ex和En系數(shù)。當(dāng)用擬合出的函數(shù)與實(shí)驗(yàn)數(shù)據(jù)吻合程度愈高,說明擬合得到的Ex和En系數(shù)是合理的。吻合程度用相關(guān)系數(shù)來衡量,即R^2。首先,我們需要打開Python的shell工具,在shell當(dāng)中新建一個(gè)對(duì)象member,對(duì)member進(jìn)行賦值。 2、這里我們所創(chuàng)建的列表當(dāng)中的元素均屬于字符串類型,同時(shí)我們也可以在列表當(dāng)中創(chuàng)建數(shù)字以及混合類型的元素。 3、先來使用append函數(shù)對(duì)已經(jīng)創(chuàng)建的列表添加元素,具體如下圖所示,會(huì)自動(dòng)在列表的最后的位置添加一個(gè)元素。 4、再來使用extend對(duì)來添加列表元素,如果是添加多個(gè)元素,需要使用列表的形式。 5、使用insert函數(shù)添加列表元素,insert中有兩個(gè)參數(shù),第一個(gè)參數(shù)即為插入的位置,第二個(gè)參數(shù)即為插入的元素。origin擬合中參數(shù)值是程序擬合的結(jié)果,自定義函數(shù)可以設(shè)置參數(shù)的初值,也可以不設(shè)定參數(shù)的初值。
成都網(wǎng)站設(shè)計(jì)、網(wǎng)站建設(shè)服務(wù)團(tuán)隊(duì)是一支充滿著熱情的團(tuán)隊(duì),執(zhí)著、敏銳、追求更好,是創(chuàng)新互聯(lián)的標(biāo)準(zhǔn)與要求,同時(shí)竭誠為客戶提供服務(wù)是我們的理念。成都創(chuàng)新互聯(lián)公司把每個(gè)網(wǎng)站當(dāng)做一個(gè)產(chǎn)品來開發(fā),精雕細(xì)琢,追求一名工匠心中的細(xì)致,我們更用心!
一般而言,擬合結(jié)果不會(huì)因?yàn)槌踔档牟煌刑蟮钠睿绻詈艽?,說明數(shù)據(jù)和函數(shù)不太匹配,需要對(duì)函數(shù)進(jìn)行改正。X0的迭代初始值選擇與求解方程,有著密切的關(guān)系。不同的初始值得出的系數(shù)是完全不一樣的。這要通過多次選擇和比較,才能得到較為合理的初值。一般的方法,可以通過隨機(jī)數(shù)并根據(jù)方程的特性來初選。
python指數(shù)這樣打出來。
1、知道當(dāng)0,指數(shù)函數(shù)是單調(diào)遞減的,當(dāng)a1時(shí),指數(shù)函數(shù)是單調(diào)遞增的。首先要定義出指數(shù)函數(shù),將a值做不同初始化。
2、利用numpy構(gòu)造出自變量,利用定義的指數(shù)函數(shù)來計(jì)算出因變量。
3、有了自變量和因變量的一些散點(diǎn),模擬平時(shí)畫函數(shù)操作,描點(diǎn)繪圖。
按照題目要求編寫的Python程序如下
def calBMI(height,weight):
BMI=weight/(height*height)
if BMI18.5:
return [BMI,"過輕"]
elif BMI24:
return [BMI,"正常"]
elif BMI28:
return [BMI,"過重"]
else:
return [BMI,"肥胖"]
import re
s=input("請(qǐng)輸入你的身高(米)和體重(公斤)【逗號(hào)隔開】:")
s1=re.split(r'[,,]',s)
height=float(s1[0])
weight=float(s1[1])
name="李子健"
bmi=calBMI(height,weight)
print("{}的測算結(jié)果為:".format(name))
print("BMI:%.2f"%bmi[0])
print(bmi[1])
源代碼(注意源代碼的縮進(jìn))
其中有兩個(gè)非常漂亮的指數(shù)函數(shù)圖就是用python的matplotlib畫出來的。這一期,我們將要介紹如何利用python繪制出如下指數(shù)函數(shù)。
圖 1 a1圖 1 a1
我們知道當(dāng)0 ,指數(shù)函數(shù) 是單調(diào)遞減的,當(dāng)a1 時(shí),指數(shù)函數(shù)是單調(diào)遞增的。所以我們首先要定義出指數(shù)函數(shù),將a值做不同初始化
import math
...
def exponential_func(x, a): #定義指數(shù)函數(shù)
y=math.pow(a, x)
return y
然后,利用numpy構(gòu)造出自變量,利用上面定義的指數(shù)函數(shù)來計(jì)算出因變量
X=np.linspace(-4, 4, 40) #構(gòu)造自變量組
Y=[exponential_func(x) for x in X] #求函數(shù)值
有了自變量和因變量的一些散點(diǎn),那么就可以模擬我們平時(shí)畫函數(shù)操作——描點(diǎn)繪圖,利用下面代碼就可以實(shí)現(xiàn)
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #導(dǎo)入坐標(biāo)軸加工模塊
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建畫布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法創(chuàng)建一個(gè)繪圖區(qū)對(duì)象ax
fig.add_axes(ax) #將繪圖區(qū)對(duì)象添加到畫布中
def exponential_func(x, a=2): #定義指數(shù)函數(shù)
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #構(gòu)造自變量組
Y=[exponential_func(x) for x in X] #求函數(shù)值
ax.plot(X, Y) #繪制指數(shù)函數(shù)
plt.show()
圖 2 a=2
圖2雖簡單,但麻雀雖小五臟俱全,指數(shù)函數(shù)該有都有,接下來是如何讓其看起來像我們?cè)谧鲌D紙上面畫的那么美觀,這里重點(diǎn)介紹axisartist 坐標(biāo)軸加工類,在的時(shí)候我們已經(jīng)用過了,這里就不再多說了。我們只需要在上面代碼后面加上一些代碼來將坐標(biāo)軸好好打扮一番。
圖 3 a1 完整代碼# -*- coding: utf-8 -*-圖 3 a1 完整代碼# -*- coding: utf-8 -*-"""Created on Sun Feb 16 10:19:23 2020project name:@author: 帥帥de三叔"""import mathimport numpy as npimport matplotlib.pyplot as pltimport mp