其中 -m 參數 == module-name
六枝網站制作公司哪家好,找創(chuàng)新互聯(lián)!從網頁設計、網站建設、微信開發(fā)、APP開發(fā)、響應式網站開發(fā)等網站項目制作,到程序開發(fā),運營維護。創(chuàng)新互聯(lián)自2013年創(chuàng)立以來到現(xiàn)在10年的時間,我們擁有了豐富的建站經驗和運維經驗,來保證我們的工作的順利進行。專注于網站建設就選創(chuàng)新互聯(lián)。
Searches sys.path for the named module and runs the corresponding .py file as a script.
以pdb 就模塊 運行xxxx.py
測試test函數 既
pdb.run("test(100,100)");
其中需要函數調用字符串,而不添加雙引號則為直接調用函數,
調用run函數后,進入pdb模式 繼而s 進入函數內部進行調試
import pdb
在需要添加斷點的地方添加 ? ?pdb.set_trace()
斷言
logging:把print()替換為logging是第3種調試程序錯誤信息方式
pdb :調試器pdb,讓程序以單步方式運行,可以隨時查看運行狀態(tài)
pdb.set_trace() :調試常用
IDE
如果要比較爽地設置斷點、單步執(zhí)行,就需要一個支持調試功能的IDE.
單元測試(Unit Testing)
為程序編寫測試——如果做的到位——有助于減少bug的出現(xiàn),并可以提高我們對程序按預期目標運行的信心。通常,測試并不能保證正確性,因為對大多數程序而言, 可能的輸入范圍以及可能的計算范圍是如此之大,只有其中最小的一部分能被實際地進 行測試。盡管如此,通過仔細地選擇測試的方法和目標,可以提高代碼的質量。
大量不同類型的測試都可以進行,比如可用性測試、功能測試以及整合測試等。這里, 我們只講單元測試一對單獨的函數、類與方法進行測試,確保其符合預期的行為。
TDD的一個關鍵點是,當我們想添加一個功能時——比如為類添加一個方法—— 我們首次為其編寫一個測試用例。當然,測試將失敗,因為我們還沒有實際編寫該方法?,F(xiàn)在,我們編寫該方法,一旦方法通過了測試,就可以返回所有測試,確保我們新添加的代碼沒有任何預期外的副作用。一旦所有測試運行完畢(包括我們?yōu)樾鹿δ芫帉懙臏y試),就可以對我們的代碼進行檢查,并有理有據地相信程序行為符合我們的期望——當然,前提是我們的測試是適當的。
比如,我們編寫了一個函數,該函數在特定的索引位置插入一個字符串,可以像下面這樣開始我們的TDD:
def insert_at(string, position, insert):
"""Returns a copy of string with insert inserted at the position
string = "ABCDE"
result =[]
for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,“-”))
result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
對不返回任何參數的函數或方法(通常返回None),我們通常賦予其由pass構成的一個suite,對那些返回值被試用的,我們或者返回一個常數(比如0),或者某個不變的參數——這也是我們這里所做的。(在更復雜的情況下,返回fake對象可能更有用一一對這樣的類,提供mock對象的第三方模塊是可用的。)
運行doctest時會失敗,并列出每個預期內的字符串('ABCD-EF'、'ABCDE-F' 等),及其實際獲取的字符串(所有的都是'ABCD-EF')。一旦確定doctest是充分的和正確的,就可以編寫該函數的主體部分,在本例中只是簡單的return string[:position] + insert+string[position:]。(如果我們編寫的是 return string[:position] + insert,之后復制 string [:position]并將其粘貼在末尾以便減少一些輸入操作,那么doctest會立即提示錯誤。)
Python的標準庫提供了兩個單元測試模塊,一個是doctest,這里和前面都簡單地提到過,另一個是unittest。此外,還有一些可用于Python的第三方測試工具。其中最著名的兩個是nose (code.google.com/p/python-nose)與py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比標準的unittest 模塊更廣泛的功能,同時保持與該模塊的兼容性,py.test則采用了與unittest有些不同的方法,試圖盡可能消除樣板測試代碼。這兩個第三方模塊都支持測試發(fā)現(xiàn),因此沒必要寫一個總體的測試程序——因為模塊將自己搜索測試程序。這使得測試整個代碼樹或某一部分 (比如那些已經起作用的模塊)變得很容易。那些對測試嚴重關切的人,在決定使用哪個測試工具之前,對這兩個(以及任何其他有吸引力的)第三方模塊進行研究都是值 得的。
創(chuàng)建doctest是直截了當的:我們在模塊中編寫測試、函數、類與方法的docstrings。 對于模塊,我們簡單地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序內部使用doctest也是可能的。比如,blocks.py程序(其模塊在后面)有自己函數的doctest,但以如下代碼結尾:
if __name__== "__main__":
main()
這里簡單地調用了程序的main()函數,并且沒有執(zhí)行程序的doctest。要實驗程序的 doctest,有兩種方法。一種是導入doctest模塊,之后運行程序---比如,在控制臺中輸 入 python3 -m doctest blocks.py (在 Wndows 平臺上,使用類似于 C:Python3 lpython.exe 這樣的形式替代python3)。如果所有測試運行良好,就沒有輸出,因此,我們可能寧愿執(zhí)行python3-m doctest blocks.py-v,因為這會列出每個執(zhí)行的doctest,并在最后給出結果摘要。
另一種執(zhí)行doctest的方法是使用unittest模塊創(chuàng)建單獨的測試程序。在概念上, unittest模塊是根據Java的JUnit單元測試庫進行建模的,并用于創(chuàng)建包含測試用例的測試套件。unittest模塊可以基于doctests創(chuàng)建測試用例,而不需要知道程序或模塊包含的任何事物——只要知道其包含doctest即可。因此,為給blocks.py程序制作一個測試套件,我們可以創(chuàng)建如下的簡單程序(將其稱為test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用這種方法,程序的名稱上會有一個隱含的約束:程序名必須是有效的模塊名。因此,名為convert-incidents.py的程序的測試不能寫成這樣。因為import convert-incidents不是有效的,在Python標識符中,連接符是無效的(避開這一約束是可能的,但最簡單的解決方案是使用總是有效模塊名的程序文件名,比如,使用下劃線替換連接符)。這里展示的結構(創(chuàng)建一個測試套件,添加一個或多個測試用例或測試套件,運行總體的測試套件,輸出結果)是典型的機遇unittest的測試。運行時,這一特定實例產生如下結果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次執(zhí)行一個測試用例時,都會輸出一個句點(因此上面的輸出最前面有3個句點),之后是一行連接符,再之后是測試摘要(如果有任何一個測試失敗,就會有更多的輸出信息)。
如果我們嘗試將測試分離開(典型情況下是要測試的每個程序和模塊都有一個測試用例),就不要再使用doctests,而是直接使用unittest模塊的功能——尤其是我們習慣于使用JUnit方法進行測試時ounittest模塊會將測試分離于代碼——對大型項目(測試編寫人員與開發(fā)人員可能不一致)而言,這種方法特別有用。此外,unittest單元測試編寫為獨立的Python模塊,因此,不會像在docstring內部編寫測試用例時受到兼容性和明智性的限制。
unittest模塊定義了 4個關鍵概念。測試夾具是一個用于描述創(chuàng)建測試(以及用完之后將其清理)所必需的代碼的術語,典型實例是創(chuàng)建測試所用的一個輸入文件,最后刪除輸入文件與結果輸出文件。測試套件是一組測試用例的組合。測試用例是測試的基本單元—我們很快就會看到實例。測試運行者是執(zhí)行一個或多個測試套件的對象。
典型情況下,測試套件是通過創(chuàng)建unittest.TestCase的子類實現(xiàn)的,其中每個名稱 以“test”開頭的方法都是一個測試用例。如果我們需要完成任何創(chuàng)建操作,就可以在一個名為setUp()的方法中實現(xiàn);類似地,對任何清理操作,也可以實現(xiàn)一個名為 tearDown()的方法。在測試內部,有大量可供我們使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(對于測試浮點數很有用)、assertRaises() 以及更多,還包括很多對應的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模塊進行了很好的歸檔,并且提供了大量功能,但在這里我們只是通過一 個非常簡單的測試套件來感受一下該模塊的使用。這里將要使用的實例,該練習要求創(chuàng)建一個Atomic模塊,該模塊可以用作一 個上下文管理器,以確?;蛘咚懈淖兌紤糜谀硞€列表、集合或字典,或者所有改變都不應用。作為解決方案提供的Atomic.py模塊使用30行代碼來實現(xiàn)Atomic類, 并提供了 100行左右的模塊doctest。這里,我們將創(chuàng)建test_Atomic.py模塊,并使用 unittest測試替換doctest,以便可以刪除doctest。
在編寫測試模塊之前,我們需要思考都需要哪些測試。我們需要測試3種不同的數據類型:列表、集合與字典。對于列表,需要測試的是插入項、刪除項或修改項的值。對于集合,我們必須測試向其中添加或刪除一個項。對于字典,我們必須測試的是插入一個項、修改一個項的值、刪除一個項。此外,還必須要測試的是在失敗的情況下,不會有任何改變實際生效。
結構上看,測試不同數據類型實質上是一樣的,因此,我們將只為測試列表編寫測試用例,而將其他的留作練習。test_Atomic.py模塊必須導入unittest模塊與要進行測試的Atomic模塊。
創(chuàng)建unittest文件時,我們通常創(chuàng)建的是模塊而非程序。在每個模塊內部,我們定義一個或多個unittest.TestCase子類。比如,test_Atomic.py模塊中僅一個單獨的 unittest-TestCase子類,也就是TestAtomic (稍后將對其進行講解),并以如下兩行結束:
if name == "__main__":
unittest.main()
這兩行使得該模塊可以單獨運行。當然,該模塊也可以被導入并從其他測試程序中運行——如果這只是多個測試套件中的一個,這一點是有意義的。
如果想要從其他測試程序中運行test_Atomic.py模塊,那么可以編寫一個與此類似的程序。我們習慣于使用unittest模塊執(zhí)行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
這里,我們已經創(chuàng)建了一個單獨的套件,這是通過讓unittest模塊讀取test_Atomic 模塊實現(xiàn)的,并且使用其每一個test*()方法(本實例中是test_list_success()、test_list_fail(),稍后很快就會看到)作為測試用例。
我們現(xiàn)在將查看TestAtomic類的實現(xiàn)。對通常的子類(不包括unittest.TestCase 子類),不怎么常見的是,沒有必要實現(xiàn)初始化程序。在這一案例中,我們將需要建立 一個方法,但不需要清理方法,并且我們將實現(xiàn)兩個測試用例。
def setUp(self):
self.original_list = list(range(10))
我們已經使用了 unittest.TestCase.setUp()方法來創(chuàng)建單獨的測試數據片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
這里,我們直接在測試方法中編寫了測試代碼,而不需要一個內部函數,也不再使用unittest.TestCase.assertRaised()作為上下文管理器(期望代碼產生AttributeError)。 最后我們也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我們已經看到的,Python的測試模塊易于使用,并且極為有用,在我們使用 TDD的情況下更是如此。它們還有比這里展示的要多得多的大量功能與特征——比如,跳過測試的能力,這有助于理解平臺差別——并且這些都有很好的文檔支持。缺失的一個功能——但nose與py.test提供了——是測試發(fā)現(xiàn),盡管這一特征被期望在后續(xù)的Python版本(或許與Python 3.2—起)中出現(xiàn)。
性能剖析(Profiling)
如果程序運行很慢,或者消耗了比預期內要多得多的內存,那么問題通常是選擇的算法或數據結構不合適,或者是以低效的方式進行實現(xiàn)。不管問題的原因是什么, 最好的方法都是準確地找到問題發(fā)生的地方,而不只是檢査代碼并試圖對其進行優(yōu)化。 隨機優(yōu)化會導致引入bug,或者對程序中本來對程序整體性能并沒有實際影響的部分進行提速,而這并非解釋器耗費大部分時間的地方。
在深入討論profiling之前,注意一些易于學習和使用的Python程序設計習慣是有意義的,并且對提高程序性能不無裨益。這些技術都不是特定于某個Python版本的, 而是合理的Python程序設計風格。第一,在需要只讀序列時,最好使用元組而非列表; 第二,使用生成器,而不是創(chuàng)建大的元組和列表并在其上進行迭代處理;第三,盡量使用Python內置的數據結構 dicts、lists、tuples 而不實現(xiàn)自己的自定義結構,因為內置的數據結構都是經過了高度優(yōu)化的;第四,從小字符串中產生大字符串時, 不要對小字符串進行連接,而是在列表中累積,最后將字符串列表結合成為一個單獨的字符串;第五,也是最后一點,如果某個對象(包括函數或方法)需要多次使用屬性進行訪問(比如訪問模塊中的某個函數),或從某個數據結構中進行訪問,那么較好的做法是創(chuàng)建并使用一個局部變量來訪問該對象,以便提供更快的訪問速度。
Python標準庫提供了兩個特別有用的模塊,可以輔助調査代碼的性能問題。一個是timeit模塊——該模塊可用于對一小段Python代碼進行計時,并可用于諸如對兩個或多個特定函數或方法的性能進行比較等場合。另一個是cProfile模塊,可用于profile 程序的性能——該模塊對調用計數與次數進行了詳細分解,以便發(fā)現(xiàn)性能瓶頸所在。
為了解timeit模塊,我們將查看一些小實例。假定有3個函數function_a()、 function_b()、function_c(), 3個函數執(zhí)行同樣的計算,但分別使用不同的算法。如果將這些函數放于同一個模塊中(或分別導入),就可以使用timeit模塊對其進行運行和比較。下面給出的是模塊最后使用的代碼:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
賦予timeit.Timer()構造子的第一個參數是我們想要執(zhí)行并計時的代碼,其形式是字符串。這里,該字符串是“function_a(X,Y)”;第二個參數是可選的,還是一個待執(zhí)行的字符串,這一次是在待計時的代碼之前,以便提供一些建立工作。這里,我們從 __main__ (即this)模塊導入了待測試的函數,還有兩個作為輸入數據傳入的變量(X 與Y),這兩個變量在該模塊中是作為全局變量提供的。我們也可以很輕易地像從其他模塊中導入數據一樣來進行導入操作。
調用timeit.Timer對象的timeit()方法時,首先將執(zhí)行構造子的第二個參數(如果有), 之后執(zhí)行構造子的第一個參數并對其執(zhí)行時間進行計時。timeit.Timer.timeit()方法的返回值是以秒計數的時間,類型是float。默認情況下,timeit()方法重復100萬次,并返回所 有這些執(zhí)行的總秒數,但在這一特定案例中,只需要1000次反復就可以給出有用的結果, 因此對重復計數次數進行了顯式指定。在對每個函數進行計時后,使用重復次數對總數進行除法操作,就得到了平均執(zhí)行時間,并在控制臺中打印出函數名與執(zhí)行時間。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在這一實例中,function_a()顯然是最快的——至少對于這里使用的輸入數據而言。 在有些情況下一一比如輸入數據不同會對性能產生巨大影響——可能需要使用多組輸入數據對每個函數進行測試,以便覆蓋有代表性的測試用例,并對總執(zhí)行時間或平均執(zhí)行時間進行比較。
有時監(jiān)控自己的代碼進行計時并不是很方便,因此timeit模塊提供了一種在命令行中對代碼執(zhí)行時間進行計時的途徑。比如,要對MyModule.py模塊中的函數function_a()進行計時,可以在控制臺中輸入如下命令:python3 -m timeit -n 1000 -s "from MyModule import function_a, X, Y" "function_a(X, Y)"(與通常所做的一樣,對 Windows 環(huán)境,我們必須使用類似于C:Python3lpython.exe這樣的內容來替換python3)。-m選項用于Python 解釋器,使其可以加載指定的模塊(這里是timeit),其他選項則由timeit模塊進行處理。 -n選項指定了循環(huán)計數次數,-s選項指定了要建立,最后一個參數是要執(zhí)行和計時的代碼。命令完成后,會向控制臺中打印運行結果,比如:
1000 loops, best of 3: 1.41 msec per loop
之后我們可以輕易地對其他兩個函數進行計時,以便對其進行整體的比較。
cProfile模塊(或者profile模塊,這里統(tǒng)稱為cProfile模塊)也可以用于比較函數 與方法的性能。與只是提供原始計時的timeit模塊不同的是,cProfile模塊精確地展示 了有什么被調用以及每個調用耗費了多少時間。下面是用于比較與前面一樣的3個函數的代碼:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我們必須將重復的次數放置在要傳遞給cProfile.run()函數的代碼內部,但不需要做任何創(chuàng)建,因為模塊函數會使用內省來尋找需要使用的函數與變量。這里沒有使用顯式的print()語句,因為默認情況下,cProfile.run()函數會在控制臺中打印其輸出。下面給出的是所有函數的相關結果(有些無關行被省略,格式也進行了稍許調整,以便與頁面適應):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyModule.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyModule.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyModule.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyModule.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyModule.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("調用的次數")列列出了對指定函數(在filename:lineno(function)中列出) 的調用次數?;叵胍幌挛覀冎貜土?1000次調用,因此必須將這個次數記住。tottime (“總的時間”)列列出了某個函數中耗費的總時間,但是排除了函數調用的其他函數內部花費的時間。第一個percall列列出了對函數的每次調用的平均時間(tottime // ncalls)。 cumtime ("累積時間")列出了在函數中耗費的時間,并且包含了函數調用的其他函數內部花費的時間。第二個percall列列出了對函數的每次調用的平均時間,包括其調用的函數耗費的時間。
這種輸出信息要比timeit模塊的原始計時信息富有啟發(fā)意義的多。我們立即可以發(fā)現(xiàn),function_b()與function_c()使用了被調用5000次以上的生成器,使得它們的速度至少要比function_a()慢10倍以上。并且,function_b()調用了更多通常意義上的函數,包括調用內置的sorted()函數,這使得其幾乎比function_c()還要慢兩倍。當然,timeit() 模塊提供了足夠的信息來查看計時上存在的這些差別,但cProfile模塊允許我們了解為什么會存在這些差別。正如timeit模塊允許對代碼進行計時而又不需要對其監(jiān)控一樣,cProfile模塊也可以做到這一點。然而,從命令行使用cProfile模塊時,我們不能精確地指定要執(zhí)行的 是什么——而只是執(zhí)行給定的程序或模塊,并報告所有這些的計時結果。需要使用的 命令行是python3 -m cProfile programOrModule.py,產生的輸出信息與前面看到的一 樣,下面給出的是輸出信息樣例,格式上進行了一些調整,并忽略了大多數行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile術語學中,原始調用指的就是非遞歸的函數調用。
以這種方式使用cProfile模塊對于識別值得進一步研究的區(qū)域是有用的。比如,這里 我們可以清晰地看到function_b()需要耗費更長的時間,但是我們怎樣獲取進一步的詳細資料?我們可以使用cProfile.run("function_b()")來替換對function_b()的調用?;蛘呖梢员4嫱耆膒rofile數據并使用pstats模塊對其進行分析。要保存profile,就必須對命令行進行稍許修改:python3 -m cProfile -o profileDataFile programOrModule.py。 之后可以對 profile 數據進行分析,比如啟動IDLE,導入pstats模塊,賦予其已保存的profileDataFile,或者也可以在控制臺中交互式地使用pstats。
下面給出的是一個非常短的控制臺會話實例,為使其適合頁面展示,進行了適當調整,我們自己的輸入則以粗體展示:
$ python3 -m cProfile -o profile.dat MyModule.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reduced from 44 to 1 due to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) - 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reduced from 44 to 1 due to restriction
Function called...
ncalls tottime cumtime
:27(function_b)-
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
輸入help可以獲取命令列表,help后面跟隨命令名可以獲取該命令的更多信息。比如, help stats將列出可以賦予stats命令的參數。還有其他一些可用的工具,可以提供profile數據的圖形化展示形式,比如 RunSnakeRun (), 該工具需要依賴于wxPython GUI庫。
使用timeit與cProfile模塊,我們可以識別出我們自己代碼中哪些區(qū)域會耗費超過預期的時間;使用cProfile模塊,還可以準確算岀時間消耗在哪里。
以上內容部分摘自視頻課程 05后端編程Python-19調試、測試和性能調優(yōu)(下) ,更多實操示例請參照視頻講解。跟著張員外講編程,學習更輕松,不花錢還能學習真本領。
裝個Pycharm
1 添加斷點
2 Debug下運行代碼:
3 F8:進行下一步操作
F7 :跳入下一個方法中