原型:extern float tanh(float x);
成都創(chuàng)新互聯(lián)主營薊州網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司,主營網(wǎng)站建設(shè)方案,app軟件開發(fā)公司,薊州h5成都小程序開發(fā)搭建,薊州網(wǎng)站營銷推廣歡迎薊州等地區(qū)企業(yè)咨詢
用法:#include math.h
功能:求x的雙曲正切值
說明:tanh(x)=(e^x-e^(-x))/(e^2+e^(-x))
舉例:
// tanh.c
#include syslib.h
#include math.h
main()
{
float x;
clrscr(); // clear screen
textmode(0x00); // 6 lines per LCD screen
x=PI/4.;
printf("tanh(%.4f)=%.4f\n",x,tanh(x));
getchar();
return 0;
}
Python math 庫提供許多對浮點數(shù)的數(shù)學(xué)運算函數(shù),math模塊不支持復(fù)數(shù)運算,若需計算復(fù)數(shù),可使用cmath模塊(本文不贅述)。
使用dir函數(shù),查看math庫中包含的所有內(nèi)容:
1) math.pi????# 圓周率π
2) math.e????#自然對數(shù)底數(shù)
3) math.inf? ? #正無窮大∞,-math.inf? ? #負(fù)無窮大-∞
4) math.nan? ? #非浮點數(shù)標(biāo)記,NaN(not a number)
1) math.fabs(x)? ? #表示X值的絕對值
2) math.fmod(x,y)? ? #表示x/y的余數(shù),結(jié)果為浮點數(shù)
3) math.fsum([x,y,z])? ? #對括號內(nèi)每個元素求和,其值為浮點數(shù)
4) math.ceil(x)? ? #向上取整,返回不小于x的最小整數(shù)
5)math.floor(x)? ? #向下取整,返回不大于x的最大整數(shù)
6) math.factorial(x)? ? #表示X的階乘,其中X值必須為整型,否則報錯
7) math.gcd(a,b)? ? #表示a,b的最大公約數(shù)
8)? math.frexp(x)? ? ? #x = i *2^j,返回(i,j)
9) math.ldexp(x,i)? ? #返回x*2^i的運算值,為math.frexp(x)函數(shù)的反運算
10) math.modf(x)? ? #表示x的小數(shù)和整數(shù)部分
11) math.trunc(x)? ? #表示x值的整數(shù)部分
12) math.copysign(x,y)? ? #表示用數(shù)值y的正負(fù)號,替換x值的正負(fù)號
13) math.isclose(a,b,rel_tol =x,abs_tol = y)? ? #表示a,b的相似性,真值返回True,否則False;rel_tol是相對公差:表示a,b之間允許的最大差值,abs_tol是最小絕對公差,對比較接近于0有用,abs_tol必須至少為0。
14) math.isfinite(x)? ? #表示當(dāng)x不為無窮大時,返回True,否則返回False
15) math.isinf(x)? ? #當(dāng)x為±∞時,返回True,否則返回False
16) math.isnan(x)? ? #當(dāng)x是NaN,返回True,否則返回False
1) math.pow(x,y)? ? #表示x的y次冪
2) math.exp(x)? ? #表示e的x次冪
3) math.expm1(x)? ? #表示e的x次冪減1
4) math.sqrt(x)? ? #表示x的平方根
5) math.log(x,base)? ? #表示x的對數(shù)值,僅輸入x值時,表示ln(x)函數(shù)
6) math.log1p(x)? ? #表示1+x的自然對數(shù)值
7) math.log2(x)? ? #表示以2為底的x對數(shù)值
8) math.log10(x)? ? #表示以10為底的x的對數(shù)值
1) math.degrees(x)? ? #表示弧度值轉(zhuǎn)角度值
2) math.radians(x)? ? #表示角度值轉(zhuǎn)弧度值
3) math.hypot(x,y)? ? #表示(x,y)坐標(biāo)到原點(0,0)的距離
4) math.sin(x)? ? #表示x的正弦函數(shù)值
5) math.cos(x)? ? #表示x的余弦函數(shù)值
6) math.tan(x)? ? #表示x的正切函數(shù)值
7)math.asin(x)? ? #表示x的反正弦函數(shù)值
8)?math.acos(x)? ? #表示x的反余弦函數(shù)值
9)?math.atan(x)? ? #表示x的反正切函數(shù)值
10) math.atan2(y,x)? ? #表示y/x的反正切函數(shù)值
11) math.sinh(x)? ? #表示x的雙曲正弦函數(shù)值
12) math.cosh(x)? ? #表示x的雙曲余弦函數(shù)值
13) math.tanh(x)? ? #表示x的雙曲正切函數(shù)值
14) math.asinh(x)? ? #表示x的反雙曲正弦函數(shù)值
15) math.acosh(x)? ? #表示x的反雙曲余弦函數(shù)值
16) math.atanh(x)? ? #表示x的反雙曲正切函數(shù)值
1)math.erf(x)? ? #高斯誤差函數(shù)
2) math.erfc(x)? ? #余補高斯誤差函數(shù)
3) math.gamma(x)? ? #伽馬函數(shù)(歐拉第二積分函數(shù))
4) math.lgamma(x)? ? #伽馬函數(shù)的自然對數(shù)
用keras框架較為方便
首先安裝anaconda,然后通過pip安裝keras
1、#導(dǎo)入各種用到的模塊組件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
import random
import numpy as np
np.random.seed(1024) ?# for reproducibility
2、。#打亂數(shù)據(jù)
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
label = label[index]
print(data.shape[0], ' samples')
#label為0~9共10個類別,keras要求格式為binary class matrices,轉(zhuǎn)化一下,直接調(diào)用keras提供的這個函數(shù)
label = np_utils.to_categorical(label, 10)
###############
#開始建立CNN模型
###############
#生成一個model
model = Sequential()
3、#第一個卷積層,4個卷積核,每個卷積核大小5*5。1表示輸入的圖片的通道,灰度圖為1通道。
#border_mode可以是valid或者full,具體看這里說明:
#激活函數(shù)用tanh
#你還可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二個卷積層,8個卷積核,每個卷積核大小3*3。4表示輸入的特征圖個數(shù),等于上一層的卷積核個數(shù)
4、全連接層,先將前一層輸出的二維特征圖flatten為一維的。
#Dense就是隱藏層。16就是上一層輸出的特征圖個數(shù)。4是根據(jù)每個卷積層計算出來的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全連接有128個神經(jīng)元節(jié)點,初始化方式為normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
#Softmax分類,輸出是10類別
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))
#############
#開始訓(xùn)練模型
##############
#使用SGD + momentum
#model.compile里的參數(shù)loss就是損失函數(shù)(目標(biāo)函數(shù))
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#調(diào)用fit方法,就是一個訓(xùn)練過程. 訓(xùn)練的epoch數(shù)設(shè)為10,batch_size為100.
#數(shù)據(jù)經(jīng)過隨機打亂shuffle=True。verbose=1,訓(xùn)練過程中輸出的信息,0、1、2三種方式都可以,無關(guān)緊要。show_accuracy=True,訓(xùn)練時每一個epoch都輸出accuracy。
#validation_split=0.2,將20%的數(shù)據(jù)作為驗證集。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用data augmentation的方法
#一些參數(shù)和調(diào)用的方法,請看文檔
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )