一、函數(shù)說明
創(chuàng)新新互聯(lián),憑借十載的成都網(wǎng)站制作、做網(wǎng)站經(jīng)驗,本著真心·誠心服務的企業(yè)理念服務于成都中小企業(yè)設計網(wǎng)站有數(shù)千家案例。做網(wǎng)站建設,選成都創(chuàng)新互聯(lián)。
在使用python作圖時,應用最廣的就是matplotlib包,但我們平時使用matplotlib時主要是畫一些簡單的圖表,很少有涉及分段函數(shù)。本次針對數(shù)值實驗中兩個較為復雜的函數(shù),使用其構(gòu)建分段函數(shù)圖像。
二、圖像代碼
2.11、函數(shù)公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代碼如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x0:
return 1
elif x0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、運行結(jié)果如下:
81036331d721706ae12808beb99b9574.png
2.21、函數(shù)公式:
479029.html
2.22、代碼如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()
pre
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
python數(shù)據(jù)分析常用圖大集合:包含折線圖、直方圖、垂直條形圖、水平條形圖、餅圖、箱線圖、熱力圖、散點圖、蜘蛛圖、二元變量分布、面積圖、六邊形圖等12種常用可視化數(shù)據(jù)分析圖,后期還會不斷的收集整理,請關(guān)注更新!
以下默認所有的操作都先導入了numpy、pandas、matplotlib、seaborn
一、折線圖
折線圖可以用來表示數(shù)據(jù)隨著時間變化的趨勢
Matplotlib
plt.plot(x,?y)
plt.show()
Seaborn
df?=?pd.DataFrame({'x':?x,?'y':?y})
sns.lineplot(x="x",?y="y",?data=df)
plt.show()
二、直方圖
直方圖是比較常見的視圖,它是把橫坐標等分成了一定數(shù)量的小區(qū)間,然后在每個小區(qū)間內(nèi)用矩形條(bars)展示該區(qū)間的數(shù)值
Matplotlib
Seaborn
三、垂直條形圖
條形圖可以幫我們查看類別的特征。在條形圖中,長條形的長度表示類別的頻數(shù),寬度表示類別。
Matplotlib
Seaborn
1plt.show()
四、水平條形圖
五、餅圖
六、箱線圖
箱線圖由五個數(shù)值點組成:最大值 (max)、最小值 (min)、中位數(shù) (median) 和上下四分位數(shù) (Q3, Q1)。
可以幫我們分析出數(shù)據(jù)的差異性、離散程度和異常值等。
Matplotlib
Seaborn
七、熱力圖
力圖,英文叫 heat map,是一種矩陣表示方法,其中矩陣中的元素值用顏色來代表,不同的顏色代表不同大小的值。通過顏色就能直觀地知道某個位置上數(shù)值的大小。
通過 seaborn 的 heatmap 函數(shù),我們可以觀察到不同年份,不同月份的乘客數(shù)量變化情況,其中顏色越淺的代表乘客數(shù)量越多
八、散點圖
散點圖的英文叫做 scatter plot,它將兩個變量的值顯示在二維坐標中,非常適合展示兩個變量之間的關(guān)系。
Matplotlib
Seaborn
九、蜘蛛圖
蜘蛛圖是一種顯示一對多關(guān)系的方法,使一個變量相對于另一個變量的顯著性是清晰可見
十、二元變量分布
二元變量分布可以看兩個變量之間的關(guān)系
十一、面積圖
面積圖又稱區(qū)域圖,強調(diào)數(shù)量隨時間而變化的程度,也可用于引起人們對總值趨勢的注意。
堆積面積圖還可以顯示部分與整體的關(guān)系。折線圖和面積圖都可以用來幫助我們對趨勢進行分析,當數(shù)據(jù)集有合計關(guān)系或者你想要展示局部與整體關(guān)系的時候,使用面積圖為更好的選擇。
十二、六邊形圖
六邊形圖將空間中的點聚合成六邊形,然后根據(jù)六邊形內(nèi)部的值為這些六邊形上色。
原文至:
可以使用Python計算機圖形學庫matplotlib來繪制SSE值與K值的函數(shù)圖像,具體步驟如下:
1. 導入必要的庫,例如matplotlib,numpy,scipy等。
2. 使用numpy和scipy生成k值與SSE值之間的矩陣,并將其存儲到列表中。
3. 使用matplotlib繪制輸入矩陣中包含的散點圖,即k值與SSE值的函數(shù)圖像。