np.sqrt是平方根
創(chuàng)新互聯(lián)-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價(jià)比臨淄網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫(kù),直接使用。一站式臨淄網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋臨淄地區(qū)。費(fèi)用合理售后完善,10余年實(shí)體公司更值得信賴。
np.pi應(yīng)是一個(gè)常數(shù)
np.pi**0.25是np.pi的0.25次方
np.arange(0,points)是數(shù)組,意思大約是【0,1,2,3,4,。。。。。points】
np.exp是以 e 為底的指數(shù)函數(shù)
剩下的,由于本人不是主學(xué)數(shù)學(xué)的,只能幫你到這了,剩下的我就算寫可能也給你寫錯(cuò)了
a?=?2/13
Prices?=?[0.0]?#prices?of?everyday
EMAs?=?[0.0]?#?ems?of?everyday
def?ema?(?N?,?Price)?:
Prices.append(Price)
if?N=1:
EMAs.append(Price)
else?:
EMAs.append((1-a)*EMAs[N-1]?+?a*Price)
ema(1,1)
ema(2,3)
print?(EMAs[1])
print?(EMAs[2])
math.exp() - 自然指數(shù)函數(shù) e^x
math.sin() - 正弦函數(shù) sin(x)
math.cos() - 余弦函數(shù) cos(x)
math.e - 數(shù)學(xué)自然數(shù) = 2.71828....
其中有兩個(gè)非常漂亮的指數(shù)函數(shù)圖就是用python的matplotlib畫出來的。這一期,我們將要介紹如何利用python繪制出如下指數(shù)函數(shù)。
圖 1 a1圖 1 a1
我們知道當(dāng)0 ,指數(shù)函數(shù) 是單調(diào)遞減的,當(dāng)a1 時(shí),指數(shù)函數(shù)是單調(diào)遞增的。所以我們首先要定義出指數(shù)函數(shù),將a值做不同初始化
import math
...
def exponential_func(x, a): #定義指數(shù)函數(shù)
y=math.pow(a, x)
return y
然后,利用numpy構(gòu)造出自變量,利用上面定義的指數(shù)函數(shù)來計(jì)算出因變量
X=np.linspace(-4, 4, 40) #構(gòu)造自變量組
Y=[exponential_func(x) for x in X] #求函數(shù)值
有了自變量和因變量的一些散點(diǎn),那么就可以模擬我們平時(shí)畫函數(shù)操作——描點(diǎn)繪圖,利用下面代碼就可以實(shí)現(xiàn)
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #導(dǎo)入坐標(biāo)軸加工模塊
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建畫布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法創(chuàng)建一個(gè)繪圖區(qū)對(duì)象ax
fig.add_axes(ax) #將繪圖區(qū)對(duì)象添加到畫布中
def exponential_func(x, a=2): #定義指數(shù)函數(shù)
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #構(gòu)造自變量組
Y=[exponential_func(x) for x in X] #求函數(shù)值
ax.plot(X, Y) #繪制指數(shù)函數(shù)
plt.show()
圖 2 a=2
圖2雖簡(jiǎn)單,但麻雀雖小五臟俱全,指數(shù)函數(shù)該有都有,接下來是如何讓其看起來像我們?cè)谧鲌D紙上面畫的那么美觀,這里重點(diǎn)介紹axisartist 坐標(biāo)軸加工類,在的時(shí)候我們已經(jīng)用過了,這里就不再多說了。我們只需要在上面代碼后面加上一些代碼來將坐標(biāo)軸好好打扮一番。
圖 3 a1 完整代碼# -*- coding: utf-8 -*-圖 3 a1 完整代碼# -*- coding: utf-8 -*-"""Created on Sun Feb 16 10:19:23 2020project name:@author: 帥帥de三叔"""import mathimport numpy as npimport matplotlib.pyplot as pltimport mp