很多業(yè)務(wù)場景中,我們希望通過一個特定的函數(shù)來擬合業(yè)務(wù)數(shù)據(jù),以此來預(yù)測未來數(shù)據(jù)的變化趨勢。(比如用戶的留存變化、付費(fèi)變化等)
為虹口等地區(qū)用戶提供了全套網(wǎng)頁設(shè)計制作服務(wù),及虹口網(wǎng)站建設(shè)行業(yè)解決方案。主營業(yè)務(wù)為做網(wǎng)站、網(wǎng)站建設(shè)、虹口網(wǎng)站設(shè)計,以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務(wù)。我們深信只要達(dá)到每一位用戶的要求,就會得到認(rèn)可,從而選擇與我們長期合作。這樣,我們也可以走得更遠(yuǎn)!
本文主要介紹在 Python 中常用的兩種曲線擬合方法:多項式擬合 和 自定義函數(shù)擬合。
通過多項式擬合,我們只需要指定想要擬合的多項式的最高項次是多少即可。
運(yùn)行結(jié)果:
對于自定義函數(shù)擬合,不僅可以用于直線、二次曲線、三次曲線的擬合,它可以適用于任意形式的曲線的擬合,只要定義好合適的曲線方程即可。
運(yùn)行結(jié)果:
轉(zhuǎn)自: python指數(shù)、冪數(shù)擬合curve_fit
1、一次二次多項式擬合
一次二次比較簡單,直接使用numpy中的函數(shù)即可,polyfit(x, y, degree)。
2、指數(shù)冪數(shù)擬合curve_fit
使用scipy.optimize 中的curve_fit,冪數(shù)擬合例子如下:
下面是指數(shù)擬合例子:
任意波形的生成 (geneartion of arbitrary waveform) 在商業(yè),軍事等領(lǐng)域都有著重要的應(yīng)用,諸如空間光通信 (free-space optics communication), 高速信號處理 (high-speed signal processing),雷達(dá) (radar) 等。在任意波形生成后, 如何評估生成的任意波形 成為另外一個重要的話題。
假設(shè)有一組實(shí)驗數(shù)據(jù),已知他們之間的函數(shù)關(guān)系:y=f(x),通過這些信息,需要確定函數(shù)中的一些參數(shù)項。例如,f 是一個線型函數(shù) f(x)=k*x+b,那么參數(shù) k 和 b 就是需要確定的值。如果這些參數(shù)用 p 表示的話,那么就需要找到一組 p 值使得如下公式中的 S 函數(shù)最?。?/p>
這種算法被稱之為 最小二乘擬合 (least-square fitting)。scipy 中的子函數(shù)庫 optimize 已經(jīng)提供實(shí)現(xiàn)最小二乘擬合算法的函數(shù) leastsq 。下面是 leastsq 函數(shù)導(dǎo)入的方式:
scipy.optimize.leastsq 使用方法
在 Python科學(xué)計算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 對數(shù)字示波器采集的三角波數(shù)據(jù)導(dǎo)入進(jìn)行了介紹,今天,就以 4GHz三角波 波形的擬合為案例介紹任意波形的擬合方法。
在 Python科學(xué)計算——如何構(gòu)建模型? 一文中,討論了如何構(gòu)建三角波模型。在標(biāo)準(zhǔn)三角波波形的基礎(chǔ)上添加了 橫向,縱向的平移和伸縮特征參數(shù) ,最后添加了 噪聲參數(shù) 模擬了三角波幅度參差不齊的隨機(jī)性特征。但在波形擬合時,并不是所有的特征參數(shù)都要納入考量,例如,噪聲參數(shù)應(yīng)是 波形生成系統(tǒng) 的固有特征,正因為它的存在使得產(chǎn)生的波形存在瑕疵,因此,在進(jìn)行波形擬合并評估時,不應(yīng)將噪聲參數(shù)納入考量,最終模型如下:
在調(diào)用 scipy.optimize.leastsq 函數(shù)時,需要構(gòu)建誤差函數(shù):
有時候,為了使圖片有更好的效果,需要對數(shù)據(jù)進(jìn)行一些處理:
leastsq 調(diào)用方式如下:
合理的設(shè)置 p0 可以減少程序運(yùn)行時間,因此,可以在運(yùn)行一次程序后,用擬合后的相應(yīng)數(shù)據(jù)對 p0 進(jìn)行修正。
在對波形進(jìn)行擬合后,調(diào)用 pylab 對擬合前后的數(shù)據(jù)進(jìn)行可視化:
均方根誤差 (root mean square error) 是一個很好的評判標(biāo)準(zhǔn),它是觀測值與真值偏差的平方和觀測次數(shù)n比值的平方根,在實(shí)際測量中,觀測次數(shù)n總是有限的,真值只能用最可信賴(最佳)值來代替.方根誤差對一組測量中的特大或特小誤差反映非常敏感,所以,均方根誤差能夠很好地反映出測量的精密度。
RMSE 用程序?qū)崿F(xiàn)如下:
擬合效果,模型參數(shù)輸出:
leastsq 函數(shù)適用于任何波形的擬合,下面就來介紹一些常用的其他波形:
求擬合函數(shù),首先要有因變量和自變量的一組測試或?qū)嶒灁?shù)據(jù),根據(jù)已知的曲線y=f(x),擬合出Ex和En系數(shù)。當(dāng)用擬合出的函數(shù)與實(shí)驗數(shù)據(jù)吻合程度愈高,說明擬合得到的Ex和En系數(shù)是合理的。吻合程度用相關(guān)系數(shù)來衡量,即R^2。首先,我們需要打開Python的shell工具,在shell當(dāng)中新建一個對象member,對member進(jìn)行賦值。 2、這里我們所創(chuàng)建的列表當(dāng)中的元素均屬于字符串類型,同時我們也可以在列表當(dāng)中創(chuàng)建數(shù)字以及混合類型的元素。 3、先來使用append函數(shù)對已經(jīng)創(chuàng)建的列表添加元素,具體如下圖所示,會自動在列表的最后的位置添加一個元素。 4、再來使用extend對來添加列表元素,如果是添加多個元素,需要使用列表的形式。 5、使用insert函數(shù)添加列表元素,insert中有兩個參數(shù),第一個參數(shù)即為插入的位置,第二個參數(shù)即為插入的元素。origin擬合中參數(shù)值是程序擬合的結(jié)果,自定義函數(shù)可以設(shè)置參數(shù)的初值,也可以不設(shè)定參數(shù)的初值。
一般而言,擬合結(jié)果不會因為初值的不同而有太大的偏差,如果偏差很大,說明數(shù)據(jù)和函數(shù)不太匹配,需要對函數(shù)進(jìn)行改正。X0的迭代初始值選擇與求解方程,有著密切的關(guān)系。不同的初始值得出的系數(shù)是完全不一樣的。這要通過多次選擇和比較,才能得到較為合理的初值。一般的方法,可以通過隨機(jī)數(shù)并根據(jù)方程的特性來初選。
在了解了最小二乘法的基本原理之后 python_numpy實(shí)用的最小二乘法理解 ,就可以用最小二乘法做曲線擬合了
從結(jié)果中可以看出,直線擬合并不能對擬合數(shù)據(jù)達(dá)到很好的效果,下面我們介紹一下曲線擬合。
b=[y1]
[y2]
......
[y100]
解得擬合函數(shù)的系數(shù)[a,b,c.....d]
CODE:
根據(jù)結(jié)果可以看到擬合的效果不錯。
我們可以通過改變
來調(diào)整擬合效果。
如果此處我們把擬合函數(shù)改為最高次為x^20的多項式
所得結(jié)果如下:
矯正 過擬合 現(xiàn)象
在保持?jǐn)M合函數(shù)改為最高次為x^20的多項式的條件下,增大樣本數(shù):
通過結(jié)果可以看出,過擬合現(xiàn)象得到了改善。
在函數(shù)擬合中,如果用p表示函數(shù)中需要確定的參數(shù),那么目標(biāo)就是找到一組p,使得下面函數(shù)S的值最?。?/p>
這種算法稱為最小二乘法擬合。Python的Scipy數(shù)值計算庫中的optimize模塊提供了 leastsq() 函數(shù),可以對數(shù)據(jù)進(jìn)行最小二乘擬合計算。
此處利用該函數(shù)對一段弧線使用圓方程進(jìn)行了擬合,并通過Matplotlib模塊進(jìn)行了作圖,程序內(nèi)容如下:
Python的使用中需要導(dǎo)入相應(yīng)的模塊,此處首先用 import 語句
分別導(dǎo)入了numpy, leastsq與pylab模塊,其中numpy模塊常用用與數(shù)組類型的建立,讀入等過程。leastsq則為最小二乘法擬合函數(shù)。pylab是繪圖模塊。
接下來我們需要讀入需要進(jìn)行擬合的數(shù)據(jù),這里使用了 numpy.loadtxt() 函數(shù):
其參數(shù)有:
進(jìn)行擬合時,首先我們需要定義一個目標(biāo)函數(shù)。對于圓的方程,我們需要圓心坐標(biāo)(a,b)以及半徑r三個參數(shù),方便起見用p來存儲:
緊接著就可以進(jìn)行擬合了, leastsq() 函數(shù)需要至少提供擬合的函數(shù)名與參數(shù)的初始值:
返回的結(jié)果為一數(shù)組,分別為擬合得到的參數(shù)與其誤差值等,這里只取擬合參數(shù)值。
leastsq() 的參數(shù)具體有:
輸出選項有:
最后我們可以將原數(shù)據(jù)與擬合結(jié)果一同做成線狀圖,可采用 pylab.plot() 函數(shù):
pylab.plot() 函數(shù)需提供兩列數(shù)組作為輸入,其他參數(shù)可調(diào)控線條顏色,形狀,粗細(xì)以及對應(yīng)名稱等性質(zhì)。視需求而定,此處不做詳解。
pylab.legend() 函數(shù)可以調(diào)控圖像標(biāo)簽的位置,有無邊框等性質(zhì)。
pylab.annotate() 函數(shù)設(shè)置注釋,需至少提供注釋內(nèi)容與放置位置坐標(biāo)的參數(shù)。
pylab.show() 函數(shù)用于顯示圖像。
最終結(jié)果如下圖所示:
用Python作科學(xué)計算
numpy.loadtxt
scipy.optimize.leastsq