def Sum(m): #函數(shù)返回兩個值:遞歸次數(shù),所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5
讓客戶滿意是我們工作的目標(biāo),不斷超越客戶的期望值來自于我們對這個行業(yè)的熱愛。我們立志把好的技術(shù)通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領(lǐng)域值得信任、有價值的長期合作伙伴,公司提供的服務(wù)項目有:申請域名、網(wǎng)站空間、營銷軟件、網(wǎng)站建設(shè)、繁峙網(wǎng)站維護(hù)、網(wǎng)站推廣。
遞歸式方法可以被用于解決很多的計算機科學(xué)問題,因此它是計算機科學(xué)中十分重要的一個概念。
絕大多數(shù)編程語言支持函數(shù)的自調(diào)用,在這些語言中函數(shù)可以通過調(diào)用自身來進(jìn)行遞歸。計算理論可以證明遞歸的作用可以完全取代循環(huán),因此在很多函數(shù)編程語言(如Scheme)中習(xí)慣用遞歸來實現(xiàn)循環(huán)。
計算機科學(xué)家尼克勞斯·維爾特如此描述遞歸:
遞歸的強大之處在于它允許用戶用有限的語句描述無限的對象。因此,在計算機科學(xué)中,遞歸可以被用來描述無限步的運算,盡管描述運算的程序是有限的。
python 2 遞歸函數(shù)和其它語言,基本沒有差別,只是不支持尾遞歸。無限遞歸最大值為固定的,但可以修改。
作者:黃哥
只要獲得所有點即可,x1為x軸起點,x2為x軸終點,gao為縱軸長度,i為切分次數(shù).
x1=0
x2=10
gao=8
f(0,gao,x1,x2)
f(i=0,gao,x1,x2){
if(i==3){
return
}
t=(double)(x1+x2)
t=t/2
print?(t,gao/2);
f(i+1,gao/2,x1,t);
f(i+1,gao/2,t,x2);
}