PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks
import torch import torch.nn as nn import torchvision class AlexNet(nn.Module): def __init__(self,num_classes=1000): super(AlexNet,self).__init__() self.feature_extraction = nn.Sequential( nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=2,bias=False), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3,stride=2,padding=0), nn.Conv2d(in_channels=96,out_channels=192,kernel_size=5,stride=1,padding=2,bias=False), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3,stride=2,padding=0), nn.Conv2d(in_channels=192,out_channels=384,kernel_size=3,stride=1,padding=1,bias=False), nn.ReLU(inplace=True), nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,stride=1,padding=1,bias=False), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1,bias=False), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=0), ) self.classifier = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(in_features=256*6*6,out_features=4096), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(in_features=4096, out_features=4096), nn.ReLU(inplace=True), nn.Linear(in_features=4096, out_features=num_classes), ) def forward(self,x): x = self.feature_extraction(x) x = x.view(x.size(0),256*6*6) x = self.classifier(x) return x if __name__ =='__main__': # model = torchvision.models.AlexNet() model = AlexNet() print(model) input = torch.randn(8,3,224,224) out = model(input) print(out.shape)
另外有需要云服務器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。