真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網站制作重慶分公司

php數(shù)據分析項目 php數(shù)據處理

php留言板項目的項目描述怎么寫

本項目需要php+mysql來實現(xiàn)。

創(chuàng)新互聯(lián)是一家專業(yè)提供丹寨企業(yè)網站建設,專注與成都做網站、成都網站建設、H5場景定制、小程序制作等業(yè)務。10年已為丹寨眾多企業(yè)、政府機構等服務。創(chuàng)新互聯(lián)專業(yè)網站建設公司優(yōu)惠進行中。

首先需要分析數(shù)據庫:

需要建立用戶表(user)

表中字段:編號(id int primary key auto_increment),昵稱(nickname varchar(255)),性別(sex int(1) 男為1,女為0),郵箱(email varchar(255)),注冊時間(reg_time varchar(255) 時間戳)

還需要建立留言表(leaveword)

表中字段:編號(id int primary key auto_increment),留言用戶編號(user_id int),留言內容(content text),留言時間(leaveword_time varchar(255))

建完表并插入一些測試數(shù)據后,就開始設計頁面了。

當用戶登錄后,需要把用戶的id存入session中$_SESSION['user_id'],以便用來驗證用戶是否登錄,是否有權限發(fā)表留言。

用戶進入到留言頁面中以后,需要分頁展示其他(包括自己)的留言。這是本人寫的分頁函數(shù)給你作為參考:

function getPageNum($table,$pagesize=10,$where="1=1"){ //這個函數(shù)用來獲得總記錄數(shù)

global $db;

$html="";

$sql="select * from ".$table." where ".$where;

$re=$db-sql_query($sql);

$num=$db-sql_numrows($re);

$pageNum=ceil($num/$pagesize);

return $pageNum;

}

function paging($table,$pagesize=10,$nowpage=1,$where="1=1",$url=""){ //這個函數(shù)用來獲得分頁字符串

global $db;

$html="";

$sql="select * from ".$table." where ".$where;

$re=$db-sql_query($sql);

$num=$db-sql_numrows($re);

$pageNum=ceil($num/$pagesize);

if($nowpage-2=2){

$start=1;

}else if($nowpage=$pageNum-2){

$start=$pageNum-4;

}else{

$start=$nowpage-2;

}

$end=($start+4=$pageNum)?$pageNum:$start+4;

$html.="a href='?page=1'首頁/a";

for($i=$start;$i=$end;$i++){

if($url==""){

$html.="a href='?page=".$i."'".$i."/a";

}else{

$html.="a href='?page=".$i."".$url."'".$i."/a";

}

}

$html.="a href='?page=".$pageNum."'尾頁/a";

return $html;

}

當用戶提交留言時,應該就不用多說了。當用戶點擊提交(submit)后,以$_POST或以$_GET來接提交的值,然后寫個插入語句

insert into leaveword values();這個不用我多說,你應該會吧。

說實在的留言確實沒多少東西,惟一的難點就是,如何把用戶的留言以分頁的形式顯示。

再難一點,就是在提交留言時,用ajax來做,達到頁面無刷新的效果。

這是本人的一點心得,希望可以對你寫項目描述有幫助。

php是怎樣實現(xiàn)淘寶賣家平臺中,數(shù)據的分析的呢?

這個 可以通過jquery 插件進行繪圖。

這個是我找到的一個、

現(xiàn)在中文解釋比較多了、

你百度搜索一下 jquery 折線圖, 好多好多。。 而且都是能用 的、、

PHP利用pdo_odbc實現(xiàn)連接數(shù)據庫示例【基于ThinkPHP5.1搭建的項目】

本文實例講述了PHP利用pdo_odbc實現(xiàn)連接數(shù)據庫。分享給大家供大家參考,具體如下:

目的:從sql

server數(shù)據庫里面把某個視圖文件調用出來,以鍵值對的方式顯示在頁面上。

利用pdo

odbc來實現(xiàn)PHP連接數(shù)據庫:

在PHP配置文件里面開啟pdo_odbc.dll服務。重啟Apache服務器。

在ThinkPHP5.1的項目中在模塊里添加config添加規(guī)定好的樣式數(shù)據庫:

代碼如下:

?php

return

[

//

數(shù)據庫類型

'type'

=

'sqlsrv',

//

服務器地址

'hostname'

=

'localhost',

//

數(shù)據庫名

'database'

=

'mysql',

//

用戶名

'username'

=

'sa',

//

密碼

'password'

=

'123456',

//

端口

'hostport'

=

'',

//

連接dsn

'dsn'

=

'odbc:Driver={SQL

Server};Server=localhost;Database=mysql',

//

數(shù)據庫連接參數(shù)

'params'

=

[],

//

數(shù)據庫編碼默認采用utf8

'charset'

=

'utf8',

//

數(shù)據庫表前綴

'prefix'

=

'',

//

數(shù)據庫調試模式

'debug'

=

true,

//

數(shù)據庫部署方式:0

集中式(單一服務器),1

分布式(主從服務器)

'deploy'

=

0,

//

數(shù)據庫讀寫是否分離

主從式有效

'rw_separate'

=

false,

//

讀寫分離后

主服務器數(shù)量

'master_num'

=

1,

//

指定從服務器序號

'slave_no'

=

'',

//

是否嚴格檢查字段是否存在

'fields_strict'

=

true,

//

數(shù)據集返回類型

'resultset_type'

=

'array',

//

自動寫入時間戳字段

'auto_timestamp'

=

false,

//

時間字段取出后的默認時間格式

'datetime_format'

=

'Y-m-d

H:i:s',

//

是否需要進行SQL性能分析

'sql_explain'

=

false,

//

Builder類

'builder'

=

'',

//

Query類

'query'

=

'\\think\\db\\Query',

//

是否需要斷線重連

'break_reconnect'

=

false,

//

斷線標識字符串

'break_match_str'

=

[],

];

?

在控制器controller里面建一個控制文件Test.php

代碼如下:

?php

namespace

app\index\controller;

use

think\Db;

use

think\Controller;

class

Test

extends

Controller

{

public

function

zz(){

$data=Db::view('View_2')-select();

echo

json_encode($data);

}

}

?

最后調用入口文件即可訪問。

我的效果:

[{"111":"123","1112":"LLP","232":"1","ROW_NUMBER":"1"},{"111":"123","1112":"BB","232":"2","ROW_NUMBER":"2"}]

更多關于thinkPHP相關內容感興趣的讀者可查看本站專題:《ThinkPHP入門教程》、《thinkPHP模板操作技巧總結》、《ThinkPHP常用方法總結》、《codeigniter入門教程》、《CI(CodeIgniter)框架進階教程》、《Zend

FrameWork框架入門教程》及《PHP模板技術總結》。

希望本文所述對大家基于ThinkPHP框架的PHP程序設計有所幫助。

您可能感興趣的文章:ThinkPHP實現(xiàn)多數(shù)據庫連接的解決方法tp5(thinkPHP5)框架實現(xiàn)多數(shù)據庫查詢的方法ThinkPHP3.1新特性之多數(shù)據庫操作更加完善tp5(thinkPHP5)框架連接數(shù)據庫的方法示例PHP7使用ODBC連接SQL

Server2008

R2數(shù)據庫示例【基于thinkPHP5.1框架】thinkPHP5實現(xiàn)的查詢數(shù)據庫并返回json數(shù)據實例tp5(thinkPHP5)操作mongoDB數(shù)據庫的方法tp5(thinkPHP5)框架數(shù)據庫Db增刪改查常見操作總結thinkPHP5框架實現(xiàn)多數(shù)據庫連接,跨數(shù)據連接查詢操作示例

PHP數(shù)據匯總生成報表并進行分析的源碼

用考勤軟件生成的??记诹鞒滩襟E如下(不同版本方法弱有不同,但是流程差不多,適用于所有考勤系統(tǒng)):

考勤機上打考勤簽到-----通過考勤軟件采集數(shù)據進入考勤系統(tǒng)-----在考勤軟件中需要簽卡、排班(或自動抓班)、寫請假單、與加班單的做好-----進行日考勤分析并對異常進行糾錯確認-----月結時進行月考勤計算-----報表管理中瀏覽、導出或直接打印月考勤報表。

PHP的算法可以實現(xiàn)大數(shù)據分析嗎

1.Bloom filter

適用范圍:可以用來實現(xiàn)數(shù)據字典,進行數(shù)據的判重,或者集合求交集

基本原理及要點:

對于原理來說很簡單,位數(shù)組+k個獨立hash函數(shù)。將hash函數(shù)對應的值的位數(shù)組置1,查找時如果發(fā)現(xiàn)所有hash函數(shù)對應位都是1說明存在,很明顯這個過程并不保證查找的結果是100%正確的。同時也不支持刪除一個已經插入的關鍵字,因為該關鍵字對應的位會牽動到其他的關鍵字。所以一個簡單的改進就是 counting Bloom filter,用一個counter數(shù)組代替位數(shù)組,就可以支持刪除了。

還有一個比較重要的問題,如何根據輸入元素個數(shù)n,確定位數(shù)組m的大小及hash函數(shù)個數(shù)。當hash函數(shù)個數(shù)k=(ln2)*(m/n)時錯誤率最小。在錯誤率不大于E的情況下,m至少要等于n*lg(1/E)才能表示任意n個元素的集合。但m還應該更大些,因為還要保證bit數(shù)組里至少一半為 0,則m 應該=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對數(shù))。

舉個例子我們假設錯誤率為0.01,則此時m應大概是n的13倍。這樣k大概是8個。

注意這里m與n的單位不同,m是bit為單位,而n則是以元素個數(shù)為單位(準確的說是不同元素的個數(shù))。通常單個元素的長度都是有很多bit的。所以使用bloom filter內存上通常都是節(jié)省的。

擴展:

Bloom filter將集合中的元素映射到位數(shù)組中,用k(k為哈希函數(shù)個數(shù))個映射位是否全1表示元素在不在這個集合中。Counting bloom filter(CBF)將位數(shù)組中的每一位擴展為一個counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現(xiàn)次數(shù)關聯(lián)。SBF采用counter中的最小值來近似表示元素的出現(xiàn)頻率。

問題實例:給你A,B兩個文件,各存放50億條URL,每條URL占用64字節(jié),內存限制是4G,讓你找出A,B文件共同的URL。如果是三個乃至n個文件呢?

根據這個問題我們來計算下內存的占用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯率0.01算需要的大概是650億個 bit?,F(xiàn)在可用的是340億,相差并不多,這樣可能會使出錯率上升些。另外如果這些urlip是一一對應的,就可以轉換成ip,則大大簡單了。

2.Hashing

適用范圍:快速查找,刪除的基本數(shù)據結構,通常需要總數(shù)據量可以放入內存

基本原理及要點:

hash函數(shù)選擇,針對字符串,整數(shù),排列,具體相應的hash方法。

碰撞處理,一種是open hashing,也稱為拉鏈法;另一種就是closed hashing,也稱開地址法,opened addressing。 ()

擴展:

d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個哈希函數(shù),h1和h2。在存儲一個新的key時,同時用兩個哈希函數(shù)進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個位置已經存儲的(有碰撞的)key比較多,然后將新key存儲在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都存儲了一個key,就把新key 存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。

問題實例:

1).海量日志數(shù)據,提取出某日訪問百度次數(shù)最多的那個IP。

IP的數(shù)目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入內存,然后進行統(tǒng)計。

3.bit-map

適用范圍:可進行數(shù)據的快速查找,判重,刪除,一般來說數(shù)據范圍是int的10倍以下

基本原理及要點:使用bit數(shù)組來表示某些元素是否存在,比如8位電話號碼

擴展:bloom filter可以看做是對bit-map的擴展

問題實例:

1)已知某個文件內包含一些電話號碼,每個號碼為8位數(shù)字,統(tǒng)計不同號碼的個數(shù)。

8位最多99 999 999,大概需要99m個bit,大概10幾m字節(jié)的內存即可。

2)2.5億個整數(shù)中找出不重復的整數(shù)的個數(shù),內存空間不足以容納這2.5億個整數(shù)。

將bit-map擴展一下,用2bit表示一個數(shù)即可,0表示未出現(xiàn),1表示出現(xiàn)一次,2表示出現(xiàn)2次及以上。或者我們不用2bit來進行表示,我們用兩個bit-map即可模擬實現(xiàn)這個2bit-map。

4.堆

適用范圍:海量數(shù)據前n大,并且n比較小,堆可以放入內存

基本原理及要點:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當前元素與最大堆里的最大元素,如果它小于最大元素,則應該替換那個最大元素。這樣最后得到的n個元素就是最小的n個。適合大數(shù)據量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。

擴展:雙堆,一個最大堆與一個最小堆結合,可以用來維護中位數(shù)。

問題實例:

1)100w個數(shù)中找最大的前100個數(shù)。

用一個100個元素大小的最小堆即可。

5.雙層桶劃分 ----其實本質上就是【分而治之】的思想,重在“分”的技巧上!

適用范圍:第k大,中位數(shù),不重復或重復的數(shù)字

基本原理及要點:因為元素范圍很大,不能利用直接尋址表,所以通過多次劃分,逐步確定范圍,然后最后在一個可以接受的范圍內進行??梢酝ㄟ^多次縮小,雙層只是一個例子。

擴展:

問題實例:

1).2.5億個整數(shù)中找出不重復的整數(shù)的個數(shù),內存空間不足以容納這2.5億個整數(shù)。

有點像鴿巢原理,整數(shù)個數(shù)為2^32,也就是,我們可以將這2^32個數(shù),劃分為2^8個區(qū)域(比如用單個文件代表一個區(qū)域),然后將數(shù)據分離到不同的區(qū)域,然后不同的區(qū)域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁盤空間,就可以很方便的解決。

2).5億個int找它們的中位數(shù)。

這個例子比上面那個更明顯。首先我們將int劃分為2^16個區(qū)域,然后讀取數(shù)據統(tǒng)計落到各個區(qū)域里的數(shù)的個數(shù),之后我們根據統(tǒng)計結果就可以判斷中位數(shù)落到那個區(qū)域,同時知道這個區(qū)域中的第幾大數(shù)剛好是中位數(shù)。然后第二次掃描我們只統(tǒng)計落在這個區(qū)域中的那些數(shù)就可以了。

實際上,如果不是int是int64,我們可以經過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個區(qū)域,然后確定區(qū)域的第幾大數(shù),在將該區(qū)域分成2^20個子區(qū)域,然后確定是子區(qū)域的第幾大數(shù),然后子區(qū)域里的數(shù)的個數(shù)只有2^20,就可以直接利用direct addr table進行統(tǒng)計了。

6.數(shù)據庫索引

適用范圍:大數(shù)據量的增刪改查

基本原理及要點:利用數(shù)據的設計實現(xiàn)方法,對海量數(shù)據的增刪改查進行處理。

擴展:

問題實例:

7.倒排索引(Inverted index)

適用范圍:搜索引擎,關鍵字查詢

基本原理及要點:為何叫倒排索引?一種索引方法,被用來存儲在全文搜索下某個單詞在一個文檔或者一組文檔中的存儲位置的映射。

以英文為例,下面是要被索引的文本:

T0 = "it is what it is"

T1 = "what is it"

T2 = "it is a banana"

我們就能得到下面的反向文件索引:

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

檢索的條件"what", "is" 和 "it" 將對應集合的交集。

正向索引開發(fā)出來用來存儲每個文檔的單詞的列表。正向索引的查詢往往滿足每個文檔有序頻繁的全文查詢和每個單詞在校驗文檔中的驗證這樣的查詢。在正向索引中,文檔占據了中心的位置,每個文檔指向了一個它所包含的索引項的序列。也就是說文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很容易看到這個反向的關系。

擴展:

問題實例:文檔檢索系統(tǒng),查詢那些文件包含了某單詞,比如常見的學術論文的關鍵字搜索。

8.外排序

適用范圍:大數(shù)據的排序,去重

基本原理及要點:外排序的歸并方法,置換選擇 敗者樹原理,最優(yōu)歸并樹

擴展:

問題實例:

1).有一個1G大小的一個文件,里面每一行是一個詞,詞的大小不超過16個字節(jié),內存限制大小是1M。返回頻數(shù)最高的100個詞。

這個數(shù)據具有很明顯的特點,詞的大小為16個字節(jié),但是內存只有1m做hash有些不夠,所以可以用來排序。內存可以當輸入緩沖區(qū)使用。

9.trie樹

適用范圍:數(shù)據量大,重復多,但是數(shù)據種類小可以放入內存

基本原理及要點:實現(xiàn)方式,節(jié)點孩子的表示方式

擴展:壓縮實現(xiàn)。

問題實例:

1).有10個文件,每個文件1G, 每個文件的每一行都存放的是用戶的query,每個文件的query都可能重復。要你按照query的頻度排序 。

2).1000萬字符串,其中有些是相同的(重復),需要把重復的全部去掉,保留沒有重復的字符串。請問怎么設計和實現(xiàn)?

3).尋找熱門查詢:查詢串的重復度比較高,雖然總數(shù)是1千萬,但如果除去重復后,不超過3百萬個,每個不超過255字節(jié)。

10.分布式處理 mapreduce

適用范圍:數(shù)據量大,但是數(shù)據種類小可以放入內存

基本原理及要點:將數(shù)據交給不同的機器去處理,數(shù)據劃分,結果歸約。

擴展:

問題實例:

1).The canonical example application of MapReduce is a process to count the appearances of

each different word in a set of documents:

void map(String name, String document):

// name: document name

// document: document contents

for each word w in document:

EmitIntermediate(w, 1);

void reduce(String word, Iterator partialCounts):

// key: a word

// values: a list of aggregated partial counts

int result = 0;

for each v in partialCounts:

result += ParseInt(v);

Emit(result);

Here, each document is split in words, and each word is counted initially with a "1" value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Reduce, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量數(shù)據分布在100臺電腦中,想個辦法高效統(tǒng)計出這批數(shù)據的TOP10。

3).一共有N個機器,每個機器上有N個數(shù)。每個機器最多存O(N)個數(shù)并對它們操作。如何找到N^2個數(shù)的中數(shù)(median)?

經典問題分析

上千萬or億數(shù)據(有重復),統(tǒng)計其中出現(xiàn)次數(shù)最多的前N個數(shù)據,分兩種情況:可一次讀入內存,不可一次讀入。

可用思路:trie樹+堆,數(shù)據庫索引,劃分子集分別統(tǒng)計,hash,分布式計算,近似統(tǒng)計,外排序

所謂的是否能一次讀入內存,實際上應該指去除重復后的數(shù)據量。如果去重后數(shù)據可以放入內存,我們可以為數(shù)據建立字典,比如通過 map,hashmap,trie,然后直接進行統(tǒng)計即可。當然在更新每條數(shù)據的出現(xiàn)次數(shù)的時候,我們可以利用一個堆來維護出現(xiàn)次數(shù)最多的前N個數(shù)據,當然這樣導致維護次數(shù)增加,不如完全統(tǒng)計后在求前N大效率高。

如果數(shù)據無法放入內存。一方面我們可以考慮上面的字典方法能否被改進以適應這種情形,可以做的改變就是將字典存放到硬盤上,而不是內存,這可以參考數(shù)據庫的存儲方法。

當然還有更好的方法,就是可以采用分布式計算,基本上就是map-reduce過程,首先可以根據數(shù)據值或者把數(shù)據hash(md5)后的值,將數(shù)據按照范圍劃分到不同的機子,最好可以讓數(shù)據劃分后可以一次讀入內存,這樣不同的機子負責處理各種的數(shù)值范圍,實際上就是map。得到結果后,各個機子只需拿出各自的出現(xiàn)次數(shù)最多的前N個數(shù)據,然后匯總,選出所有的數(shù)據中出現(xiàn)次數(shù)最多的前N個數(shù)據,這實際上就是reduce過程。

實際上可能想直接將數(shù)據均分到不同的機子上進行處理,這樣是無法得到正確的解的。因為一個數(shù)據可能被均分到不同的機子上,而另一個則可能完全聚集到一個機子上,同時還可能存在具有相同數(shù)目的數(shù)據。比如我們要找出現(xiàn)次數(shù)最多的前100個,我們將1000萬的數(shù)據分布到10臺機器上,找到每臺出現(xiàn)次數(shù)最多的前 100個,歸并之后這樣不能保證找到真正的第100個,因為比如出現(xiàn)次數(shù)最多的第100個可能有1萬個,但是它被分到了10臺機子,這樣在每臺上只有1千個,假設這些機子排名在1000個之前的那些都是單獨分布在一臺機子上的,比如有1001個,這樣本來具有1萬個的這個就會被淘汰,即使我們讓每臺機子選出出現(xiàn)次數(shù)最多的1000個再歸并,仍然會出錯,因為可能存在大量個數(shù)為1001個的發(fā)生聚集。因此不能將數(shù)據隨便均分到不同機子上,而是要根據hash 后的值將它們映射到不同的機子上處理,讓不同的機器處理一個數(shù)值范圍。

而外排序的方法會消耗大量的IO,效率不會很高。而上面的分布式方法,也可以用于單機版本,也就是將總的數(shù)據根據值的范圍,劃分成多個不同的子文件,然后逐個處理。處理完畢之后再對這些單詞的及其出現(xiàn)頻率進行一個歸并。實際上就可以利用一個外排序的歸并過程。

另外還可以考慮近似計算,也就是我們可以通過結合自然語言屬性,只將那些真正實際中出現(xiàn)最多的那些詞作為一個字典,使得這個規(guī)模可以放入內存。

php數(shù)據分析

這個問題其實簡單,你可以在foreach外先設置一個空數(shù)組,作用是把2016-11-29作為鍵 出現(xiàn)的次數(shù)作為value存儲起來, 代碼

$tmpArr = array();

foreach($ips as $key = $value)

{

$tmpArr[explode('_',$key)[0]] ++;

}

foreach($tmpArr as $key = $tmp)

{

echo $key." ".$tmp."br";

}

但是具體的數(shù)據結構要根據你自己情況來定。


分享名稱:php數(shù)據分析項目 php數(shù)據處理
當前路徑:http://weahome.cn/article/dooicee.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部