真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python函數(shù)擬合 python求擬合函數(shù)

python_numpy最小二乘法的曲線擬合

在了解了最小二乘法的基本原理之后 python_numpy實用的最小二乘法理解 ,就可以用最小二乘法做曲線擬合了

十載專注建站、設(shè)計、互聯(lián)網(wǎng)產(chǎn)品按需搭建網(wǎng)站服務(wù),業(yè)務(wù)涵蓋品牌網(wǎng)站建設(shè)、商城網(wǎng)站建設(shè)、小程序制作、軟件系統(tǒng)開發(fā)、重慶APP開發(fā)公司等。憑借多年豐富的經(jīng)驗,我們會仔細了解每個客戶的需求而做出多方面的分析、設(shè)計、整合,為客戶設(shè)計出具風(fēng)格及創(chuàng)意性的商業(yè)解決方案,成都創(chuàng)新互聯(lián)更提供一系列網(wǎng)站制作和網(wǎng)站推廣的服務(wù),以推動各中小企業(yè)全面信息數(shù)字化,并利用創(chuàng)新技術(shù)幫助各行業(yè)提升企業(yè)形象和運營效率。

從結(jié)果中可以看出,直線擬合并不能對擬合數(shù)據(jù)達到很好的效果,下面我們介紹一下曲線擬合。

b=[y1]

[y2]

......

[y100]

解得擬合函數(shù)的系數(shù)[a,b,c.....d]

CODE:

根據(jù)結(jié)果可以看到擬合的效果不錯。

我們可以通過改變

來調(diào)整擬合效果。

如果此處我們把擬合函數(shù)改為最高次為x^20的多項式

所得結(jié)果如下:

矯正 過擬合 現(xiàn)象

在保持擬合函數(shù)改為最高次為x^20的多項式的條件下,增大樣本數(shù):

通過結(jié)果可以看出,過擬合現(xiàn)象得到了改善。

Python科學(xué)計算——任意波形擬合

任意波形的生成 (geneartion of arbitrary waveform) 在商業(yè),軍事等領(lǐng)域都有著重要的應(yīng)用,諸如空間光通信 (free-space optics communication), 高速信號處理 (high-speed signal processing),雷達 (radar) 等。在任意波形生成后, 如何評估生成的任意波形 成為另外一個重要的話題。

假設(shè)有一組實驗數(shù)據(jù),已知他們之間的函數(shù)關(guān)系:y=f(x),通過這些信息,需要確定函數(shù)中的一些參數(shù)項。例如,f 是一個線型函數(shù) f(x)=k*x+b,那么參數(shù) k 和 b 就是需要確定的值。如果這些參數(shù)用 p 表示的話,那么就需要找到一組 p 值使得如下公式中的 S 函數(shù)最小:

這種算法被稱之為 最小二乘擬合 (least-square fitting)。scipy 中的子函數(shù)庫 optimize 已經(jīng)提供實現(xiàn)最小二乘擬合算法的函數(shù) leastsq 。下面是 leastsq 函數(shù)導(dǎo)入的方式:

scipy.optimize.leastsq 使用方法

在 Python科學(xué)計算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 對數(shù)字示波器采集的三角波數(shù)據(jù)導(dǎo)入進行了介紹,今天,就以 4GHz三角波 波形的擬合為案例介紹任意波形的擬合方法。

在 Python科學(xué)計算——如何構(gòu)建模型? 一文中,討論了如何構(gòu)建三角波模型。在標(biāo)準(zhǔn)三角波波形的基礎(chǔ)上添加了 橫向,縱向的平移和伸縮特征參數(shù) ,最后添加了 噪聲參數(shù) 模擬了三角波幅度參差不齊的隨機性特征。但在波形擬合時,并不是所有的特征參數(shù)都要納入考量,例如,噪聲參數(shù)應(yīng)是 波形生成系統(tǒng) 的固有特征,正因為它的存在使得產(chǎn)生的波形存在瑕疵,因此,在進行波形擬合并評估時,不應(yīng)將噪聲參數(shù)納入考量,最終模型如下:

在調(diào)用 scipy.optimize.leastsq 函數(shù)時,需要構(gòu)建誤差函數(shù):

有時候,為了使圖片有更好的效果,需要對數(shù)據(jù)進行一些處理:

leastsq 調(diào)用方式如下:

合理的設(shè)置 p0 可以減少程序運行時間,因此,可以在運行一次程序后,用擬合后的相應(yīng)數(shù)據(jù)對 p0 進行修正。

在對波形進行擬合后,調(diào)用 pylab 對擬合前后的數(shù)據(jù)進行可視化:

均方根誤差 (root mean square error) 是一個很好的評判標(biāo)準(zhǔn),它是觀測值與真值偏差的平方和觀測次數(shù)n比值的平方根,在實際測量中,觀測次數(shù)n總是有限的,真值只能用最可信賴(最佳)值來代替.方根誤差對一組測量中的特大或特小誤差反映非常敏感,所以,均方根誤差能夠很好地反映出測量的精密度。

RMSE 用程序?qū)崿F(xiàn)如下:

擬合效果,模型參數(shù)輸出:

leastsq 函數(shù)適用于任何波形的擬合,下面就來介紹一些常用的其他波形:

Python 中的函數(shù)擬合

很多業(yè)務(wù)場景中,我們希望通過一個特定的函數(shù)來擬合業(yè)務(wù)數(shù)據(jù),以此來預(yù)測未來數(shù)據(jù)的變化趨勢。(比如用戶的留存變化、付費變化等)

本文主要介紹在 Python 中常用的兩種曲線擬合方法:多項式擬合 和 自定義函數(shù)擬合。

通過多項式擬合,我們只需要指定想要擬合的多項式的最高項次是多少即可。

運行結(jié)果:

對于自定義函數(shù)擬合,不僅可以用于直線、二次曲線、三次曲線的擬合,它可以適用于任意形式的曲線的擬合,只要定義好合適的曲線方程即可。

運行結(jié)果:


新聞標(biāo)題:python函數(shù)擬合 python求擬合函數(shù)
分享地址:http://weahome.cn/article/dooiooh.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部