真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

gis在線(xiàn)監(jiān)測(cè)關(guān)鍵技術(shù) gis在線(xiàn)監(jiān)測(cè)有哪些內(nèi)容

電力GIS的PASS技術(shù)

伴隨著計(jì)算機(jī)技術(shù)、傳感器技術(shù)、數(shù)字化技術(shù)的不斷發(fā)展,智能化GIS高壓變電站——PASS技術(shù),最近幾年得到迅速的推廣和應(yīng)用,介紹如下: PASS是具有金屬外殼的、氣體絕緣的、內(nèi)裝有斷路器、隔離開(kāi)關(guān)、接地開(kāi)關(guān)、電壓/電流傳感器的全封閉組合電器。PASS反映了GIS制造技術(shù)的最新成果。其主要特點(diǎn)概括如下:

創(chuàng)新互聯(lián)公司服務(wù)項(xiàng)目包括扎蘭屯網(wǎng)站建設(shè)、扎蘭屯網(wǎng)站制作、扎蘭屯網(wǎng)頁(yè)制作以及扎蘭屯網(wǎng)絡(luò)營(yíng)銷(xiāo)策劃等。多年來(lái),我們專(zhuān)注于互聯(lián)網(wǎng)行業(yè),利用自身積累的技術(shù)優(yōu)勢(shì)、行業(yè)經(jīng)驗(yàn)、深度合作伙伴關(guān)系等,向廣大中小型企業(yè)、政府機(jī)構(gòu)等提供互聯(lián)網(wǎng)行業(yè)的解決方案,扎蘭屯網(wǎng)站推廣取得了明顯的社會(huì)效益與經(jīng)濟(jì)效益。目前,我們服務(wù)的客戶(hù)以成都為中心已經(jīng)輻射到扎蘭屯省份的部分城市,未來(lái)相信會(huì)繼續(xù)擴(kuò)大服務(wù)區(qū)域并繼續(xù)獲得客戶(hù)的支持與信任!

3.1.1 采用了先進(jìn)的組合式電壓/電流傳感器技術(shù)和組合式隔離開(kāi)關(guān)/接地開(kāi)關(guān)技術(shù),使設(shè)備更加緊湊,體積更加小型化。

3.1.2 在測(cè)量、控制、保護(hù)系統(tǒng)中,采用了計(jì)算機(jī)技術(shù),數(shù)字化技術(shù),光纖通訊技術(shù),支持?jǐn)?shù)字式繼電器,繼電保護(hù)系統(tǒng)引入了微機(jī)處理和分段監(jiān)控保護(hù)。

3.1.3 采用了預(yù)安裝技術(shù),整套設(shè)備在出廠前安裝、調(diào)試完畢。 在PASS中,常規(guī)的電壓、電流互感器已被新一代組合電壓/電流傳感器取代,采用羅柯夫斯基(Rogowiski)電流傳感器技術(shù)來(lái)測(cè)量電流,其很寬的線(xiàn)性特性,保證了在所測(cè)量或保護(hù)的電流范圍內(nèi)不會(huì)出現(xiàn)飽和。電壓的測(cè)量采用的是具有金屬外殼封裝的電容分壓器,很好地避免了鐵磁諧振。

檢測(cè)到的電壓、電流信號(hào)由PASS自身進(jìn)行處理,先由傳感器和執(zhí)行器的處理器接口PISA(Process Interface for Sensors and Actuators)將模擬信號(hào)數(shù)字化后經(jīng)光纖通訊母線(xiàn)以串行方式傳輸?shù)骄偷氐拈g隔控制柜中的智能控制和保護(hù)單元。傳感器安裝在斷路器的出口處,這樣既可以滿(mǎn)足繼電保護(hù)系統(tǒng)和計(jì)量表計(jì)的需要,也可以用于其他的目的。如有必要,也可以在斷路器的母線(xiàn)側(cè)安裝額外的傳感器。 PASS采用了如下技術(shù):

3.3.1 所有測(cè)量、保護(hù)信號(hào)經(jīng)PISA預(yù)處理后經(jīng)串行光纖總線(xiàn)送至間隔控制柜。

3.3.2 面向間隔的控制、保護(hù)、測(cè)量功能的裝置設(shè)在就地控制柜內(nèi)。

3.3.3 間隔與間隔之間、間隔與變電站之間的通訊也采用串行通訊光纖總線(xiàn)。

3.3.4PASS支持保護(hù)用的數(shù)字繼電器,也兼顧了傳統(tǒng)的機(jī)電式繼電器,若使用后者,需另行安裝電磁式互感器。

PASS的操作機(jī)構(gòu)控制、氣體絕緣強(qiáng)度的測(cè)量以及其他物理量的在線(xiàn)狀態(tài)監(jiān)測(cè)也可采用先進(jìn)的傳感器技術(shù)來(lái)實(shí)現(xiàn),例如設(shè)備自檢、絕緣氣體強(qiáng)度趨勢(shì)分析、斷路器狀態(tài)(操作能量需求、觸頭位移、剩余壽命預(yù)測(cè))等。 AIS和PASS間隔的單線(xiàn)圖,PASS技術(shù)和常規(guī)AIS模式,兩者的差別就在于PASS在間隔的線(xiàn)路側(cè)省去一組隔離開(kāi)關(guān)和接地開(kāi)關(guān)。在常規(guī)的AIS中,線(xiàn)路側(cè)的隔離開(kāi)關(guān)主要用于當(dāng)設(shè)備檢修時(shí)隔離之用,在PASS中,因?yàn)镻ASS具有高度的可靠性,故可不用該隔離開(kāi)關(guān)和接地開(kāi)關(guān)。

采用PASS技術(shù)后,除了提高了變電站的整體技術(shù)水平外,由于整個(gè)變電站的占地面積大大減少,土地利用率大大提高,帶來(lái)的益處是顯而易見(jiàn)的:

3.4.1 由于PASS可采用管型母線(xiàn)布置,從而減小了相間距離,可大大縮短軟母線(xiàn)。

3.4.2 可減小間隔的長(zhǎng)度和寬度,由于絕緣子的數(shù)量減少,絕緣子閃絡(luò)的危險(xiǎn)大大降低;需用更少的鋼構(gòu)架和接地鋼材,電纜溝的數(shù)量也隨之減少。

如何在環(huán)境監(jiān)測(cè)中應(yīng)用GIS技術(shù)?

GIS技術(shù),即地理信息系統(tǒng),在環(huán)境監(jiān)測(cè)系統(tǒng)中發(fā)揮著不容忽視的作用,不僅能整合、分析過(guò)去的研究結(jié)果,還能為未來(lái)的研究方向和保護(hù)工作提供建議及對(duì)策。具體來(lái)說(shuō),GIS在監(jiān)測(cè)農(nóng)家生態(tài)旅游環(huán)境中的主要應(yīng)用領(lǐng)域如下:

(1)建立稀有動(dòng)物數(shù)據(jù)庫(kù)。利用野外調(diào)查數(shù)據(jù),確定野生動(dòng)物的分布地點(diǎn)和族群量,再將這些數(shù)據(jù)及動(dòng)植物基本數(shù)據(jù)輸入GIS。這些數(shù)據(jù)可與其他空間性數(shù)據(jù)如植被分布圖、土地利用圖、土地發(fā)展趨勢(shì)圖等相結(jié)合。這些數(shù)據(jù)也可與同級(jí)程序結(jié)合,進(jìn)行仿真模擬,以預(yù)測(cè)環(huán)境改變對(duì)這些動(dòng)植物的影響,同時(shí)還可用來(lái)進(jìn)行資源保護(hù)和經(jīng)營(yíng)管理等。

(2)生物資源調(diào)查的規(guī)劃。地理信息系統(tǒng)可通過(guò)數(shù)據(jù)處理,將環(huán)境劃分為均質(zhì)(Homogeneous)的小區(qū)域,以方便研究者在每一個(gè)區(qū)域內(nèi)選定觀測(cè)點(diǎn)進(jìn)行調(diào)查,并進(jìn)行各區(qū)域內(nèi)生物族群組成的比較研究。

(3)建立動(dòng)植物分布數(shù)據(jù)庫(kù)。使用GIS能建立生物分布的數(shù)據(jù)庫(kù),若能配合遙測(cè)技術(shù)所得的數(shù)據(jù),就可得到生物所在地的狀況,再借由圖形數(shù)據(jù)來(lái)展現(xiàn)動(dòng)物的分布,以提高數(shù)據(jù)可讀性,并可進(jìn)行深入的分析。生物資源數(shù)據(jù)庫(kù)的建立,可幫助了解周?chē)沫h(huán)境狀況,在資源規(guī)劃、利用、生態(tài)保護(hù)、景觀生態(tài)學(xué)研究、環(huán)境教育和國(guó)際交流上,都有其應(yīng)用范圍。

GIS基本技術(shù)有哪些?

引言

地理信息系統(tǒng)(Geographic Information System,簡(jiǎn)稱(chēng)GIS)是計(jì)算機(jī)科學(xué)、地理學(xué)、測(cè)量學(xué)、地圖學(xué)等多門(mén)學(xué)科綜合的技術(shù)[1]。GIS的基本技術(shù)是空間數(shù)據(jù)庫(kù)、地圖可視化及空間分析,而空間數(shù)據(jù)庫(kù)是GIS的關(guān)鍵??臻g數(shù)據(jù)挖掘技術(shù)作為當(dāng)前數(shù)據(jù)庫(kù)技術(shù)最活躍的分支與知識(shí)獲取手段,在GIS中的應(yīng)用推動(dòng)著GIS朝智能化和集成化的方向發(fā)展。

1 空間數(shù)據(jù)庫(kù)與空間數(shù)據(jù)挖掘技術(shù)的特點(diǎn)

隨著數(shù)據(jù)庫(kù)技術(shù)的不斷發(fā)展和數(shù)據(jù)庫(kù)管理系統(tǒng)的廣泛應(yīng)用,數(shù)據(jù)庫(kù)中存儲(chǔ)的數(shù)據(jù)量也在急劇增大,在這些海量數(shù)據(jù)的背后隱藏了很多具有決策意義的信息。但是,現(xiàn)今數(shù)據(jù)庫(kù)的大多數(shù)應(yīng)用仍然停留在查詢(xún)、檢索階段,數(shù)據(jù)庫(kù)中隱藏的豐富的知識(shí)遠(yuǎn)遠(yuǎn)沒(méi)有得到充分的發(fā)掘和利用,數(shù)據(jù)庫(kù)中數(shù)據(jù)的急劇增長(zhǎng)和人們對(duì)數(shù)據(jù)庫(kù)處理和理解的困難形成了強(qiáng)烈的反差,導(dǎo)致“人們被數(shù)據(jù)淹沒(méi),但卻饑餓于知識(shí)”的現(xiàn)象。

空間數(shù)據(jù)庫(kù)(數(shù)據(jù)倉(cāng)庫(kù))中的空間數(shù)據(jù)除了其顯式信息外,還具有豐富的隱含信息,如數(shù)字高程模型〔DEM或TIN〕,除了載荷高程信息外,還隱含了地質(zhì)巖性與構(gòu)造方面的信息;植物的種類(lèi)是顯式信息,但其中還隱含了氣候的水平地帶性和垂直地帶性的信息,等等。這些隱含的信息只有通過(guò)數(shù)據(jù)挖掘才能顯示出來(lái)??臻g數(shù)據(jù)挖掘(Spatial Data Mining,簡(jiǎn)稱(chēng)SDM),或者稱(chēng)為從空間數(shù)據(jù)庫(kù)中發(fā)現(xiàn)知識(shí),是為了解決空間數(shù)據(jù)海量特性而擴(kuò)展的一個(gè)新的數(shù)據(jù)挖掘的研究分支,是指從空間數(shù)據(jù)庫(kù)中提取隱含的、用戶(hù)感興趣的空間或非空間的模式和普遍特征的過(guò)程[2]。由于SDM的對(duì)象主要是空間數(shù)據(jù)庫(kù),而空間數(shù)據(jù)庫(kù)中不僅存儲(chǔ)了空間事物或?qū)ο蟮膸缀螖?shù)據(jù)、屬性數(shù)據(jù),而且存儲(chǔ)了空間事物或?qū)ο笾g的圖形空間關(guān)系,因此其處理方法有別于一般的數(shù)據(jù)挖掘方法。SDM與傳統(tǒng)的地學(xué)數(shù)據(jù)分析方法的本質(zhì)區(qū)別在于SDM是在沒(méi)有明確假設(shè)的前提下去挖掘信息、發(fā)現(xiàn)知識(shí),挖掘出的知識(shí)應(yīng)具有事先未知、有效和可實(shí)用3個(gè)特征。

空間數(shù)據(jù)挖掘技術(shù)需要綜合數(shù)據(jù)挖掘技術(shù)與空間數(shù)據(jù)庫(kù)技術(shù),它可用于對(duì)空間數(shù)據(jù)的理解,對(duì)空間關(guān)系和空間與非空間關(guān)系的發(fā)現(xiàn)、空間知識(shí)庫(kù)的構(gòu)造以及空間數(shù)據(jù)庫(kù)的重組和查詢(xún)的優(yōu)化等。

2 空間數(shù)據(jù)挖掘技術(shù)的主要方法及特點(diǎn)

常用的空間數(shù)據(jù)挖掘技術(shù)包括:序列分析、分類(lèi)分析、預(yù)測(cè)、聚類(lèi)分析、關(guān)聯(lián)規(guī)則分析、時(shí)間序列分析、粗集方法及云理論等。本文從挖掘任務(wù)和挖掘方法的角度,著重介紹了分類(lèi)分析、聚類(lèi)分析和關(guān)聯(lián)規(guī)則分析三種常用的重要的方法。

2.1、分類(lèi)分析

分類(lèi)在數(shù)據(jù)挖掘中是一項(xiàng)非常重要的任務(wù),目前在商業(yè)上應(yīng)用最多。分類(lèi)的目的是學(xué)會(huì)一個(gè)分類(lèi)函數(shù)或分類(lèi)模型(也常常稱(chēng)作分類(lèi)器),該模型能把數(shù)據(jù)庫(kù)中的數(shù)據(jù)項(xiàng)映射到給定類(lèi)別中的某一個(gè)。分類(lèi)和我們熟知的回歸方法都可用于預(yù)測(cè),兩者的目的都是從歷史數(shù)據(jù)紀(jì)錄中自動(dòng)推導(dǎo)出對(duì)給定數(shù)據(jù)的推廣描述,從而能對(duì)未來(lái)數(shù)據(jù)進(jìn)行預(yù)測(cè)。和回歸方法不同的是,分類(lèi)的輸出是離散的類(lèi)別值,而回歸的輸出則是連續(xù)的數(shù)值。二者常表現(xiàn)為一棵決策樹(shù),根據(jù)數(shù)據(jù)值從樹(shù)根開(kāi)始搜索,沿著數(shù)據(jù)滿(mǎn)足的分支往上走,走到樹(shù)葉就能確定類(lèi)別??臻g分類(lèi)的規(guī)則實(shí)質(zhì)是對(duì)給定數(shù)據(jù)對(duì)象集的抽象和概括,可用宏元組表示。

要構(gòu)造分類(lèi)器,需要有一個(gè)訓(xùn)練樣本數(shù)據(jù)集作為輸入。訓(xùn)練集由一組數(shù)據(jù)庫(kù)記錄或元組構(gòu)成,每個(gè)元組是一個(gè)由特征(又稱(chēng)屬性)值組成的特征向量,此外,訓(xùn)練樣本還有一個(gè)類(lèi)別標(biāo)記。一個(gè)具體樣本的形式可為:( v1, v2, ..., vn; c );其中vi表示字段值,c表示類(lèi)別。

分類(lèi)器的構(gòu)造方法有統(tǒng)計(jì)方法、機(jī)器學(xué)習(xí)方法、神經(jīng)網(wǎng)絡(luò)方法等等。統(tǒng)計(jì)方法包括貝葉斯法和非參數(shù)法(近鄰學(xué)習(xí)或基于事例的學(xué)習(xí)),對(duì)應(yīng)的知識(shí)表示是判別函數(shù)和原型事例。機(jī)器學(xué)習(xí)方法包括決策樹(shù)法和規(guī)則歸納法,前者對(duì)應(yīng)的表示為決策樹(shù)或判別樹(shù),后者則一般為產(chǎn)生式規(guī)則。神經(jīng)網(wǎng)絡(luò)方法主要是反向傳播(Back-Propagation,簡(jiǎn)稱(chēng)BP)算法,它的模型表示是前向反饋神經(jīng)網(wǎng)絡(luò)模型(由代表神經(jīng)元的節(jié)點(diǎn)和代表聯(lián)接權(quán)值的邊組成的一種體系結(jié)構(gòu)),BP算法本質(zhì)上是一種非線(xiàn)性判別函數(shù)[3]。另外,最近又興起了一種新的方法:粗糙集(rough set),其知識(shí)表示是產(chǎn)生式規(guī)則。

不同的分類(lèi)器有不同的特點(diǎn)。有三種分類(lèi)器評(píng)價(jià)或比較尺度:1) 預(yù)測(cè)準(zhǔn)確度;2) 計(jì)算復(fù)雜度;3) 模型描述的簡(jiǎn)潔度。預(yù)測(cè)準(zhǔn)確度是用得最多的一種比較尺度,特別是對(duì)于預(yù)測(cè)型分類(lèi)任務(wù),目前公認(rèn)的方法是10番分層交叉驗(yàn)證法。計(jì)算復(fù)雜度依賴(lài)于具體的實(shí)現(xiàn)細(xì)節(jié)和硬件環(huán)境,在數(shù)據(jù)挖掘中,由于操作對(duì)象是海量的數(shù)據(jù)庫(kù),因此空間和時(shí)間的復(fù)雜度問(wèn)題將是非常重要的一個(gè)環(huán)節(jié)。對(duì)于描述型的分類(lèi)任務(wù),模型描述越簡(jiǎn)潔越受歡迎。例如,采用規(guī)則歸納法表示的分類(lèi)器構(gòu)造法就很有用,而神經(jīng)網(wǎng)絡(luò)方法產(chǎn)生的結(jié)果就難以理解。

另外要注意的是,分類(lèi)的效果一般和數(shù)據(jù)的特點(diǎn)有關(guān)。有的數(shù)據(jù)噪聲大,有的有缺值, 有的分布稀疏,有的字段或?qū)傩蚤g相關(guān)性強(qiáng),有的屬性是離散的而有的是連續(xù)值或混合式的。目前普遍認(rèn)為不存在某種方法能適合于各種特點(diǎn)的數(shù)據(jù)。

分類(lèi)技術(shù)在實(shí)際應(yīng)用非常重要,比如:可以根據(jù)房屋的地理位置決定房屋的檔次等。

2. 2 聚類(lèi)分析

聚類(lèi)是指根據(jù)“物以類(lèi)聚”的原理,將本身沒(méi)有類(lèi)別的樣本聚集成不同的組,并且對(duì)每一個(gè)這樣的組進(jìn)行描述的過(guò)程。它的目的是使得屬于同一個(gè)組的樣本之間應(yīng)該彼此相似,而不同組的樣本應(yīng)足夠不相似。與分類(lèi)分析不同,進(jìn)行聚類(lèi)前并不知道將要?jiǎng)澐殖蓭讉€(gè)組和什么樣的組,也不知道根據(jù)哪些空間區(qū)分規(guī)則來(lái)定義組。其目的旨在發(fā)現(xiàn)空間實(shí)體的屬性間的函數(shù)關(guān)系,挖掘的知識(shí)用以屬性名為變量的數(shù)學(xué)方程來(lái)表示。聚類(lèi)方法包括統(tǒng)計(jì)方法、機(jī)器學(xué)習(xí)方法、神經(jīng)網(wǎng)絡(luò)方法和面向數(shù)據(jù)庫(kù)的方法?;诰垲?lèi)分析方法的空間數(shù)據(jù)挖掘算法包括均值近似算法[4]、CLARANS、BIRCH、DBSCAN等算法。目前,對(duì)空間數(shù)據(jù)聚類(lèi)分析方法的研究是一個(gè)熱點(diǎn)。

對(duì)于空間數(shù)據(jù),利用聚類(lèi)分析方法,可以根據(jù)地理位置以及障礙物的存在情況自動(dòng)地進(jìn)行區(qū)域劃分。例如,根據(jù)分布在不同地理位置的ATM機(jī)的情況將居民進(jìn)行區(qū)域劃分,根據(jù)這一信息,可以有效地進(jìn)行ATM機(jī)的設(shè)置規(guī)劃,避免浪費(fèi),同時(shí)也避免失掉每一個(gè)商機(jī)。

2.3 關(guān)聯(lián)規(guī)則分析

關(guān)聯(lián)規(guī)則分析主要用于發(fā)現(xiàn)不同事件之間的關(guān)聯(lián)性,即一事物發(fā)生時(shí),另一事物也經(jīng)常發(fā)生。關(guān)聯(lián)分析的重點(diǎn)在于快速發(fā)現(xiàn)那些有實(shí)用價(jià)值的關(guān)聯(lián)發(fā)生的事件。其主要依據(jù)是:事件發(fā)生的概率和條件概率應(yīng)該符合一定的統(tǒng)計(jì)意義??臻g關(guān)聯(lián)規(guī)則的形式是X->Y[S%,C%],其中X、Y是空間或非空間謂詞的集合,S%表示規(guī)則的支持度,C%表示規(guī)則的置信度??臻g謂詞的形式有3種:表示拓?fù)浣Y(jié)構(gòu)的謂詞、表示空間方向的謂詞和表示距離的謂詞[5]。各種各樣的空間謂詞可以構(gòu)成空間關(guān)聯(lián)規(guī)則。如,距離信息(如Close_to(臨近)、Far_away(遠(yuǎn)離))、拓?fù)潢P(guān)系(Intersect(交)、Overlap(重疊)、Disjoin(分離))和空間方位(如Right_of(右邊)、West_of(西邊))。實(shí)際上大多數(shù)算法都是利用空間數(shù)據(jù)的關(guān)聯(lián)特性改進(jìn)其分類(lèi)算法,使得它適合于挖掘空間數(shù)據(jù)中的相關(guān)性,從而可以根據(jù)一個(gè)空間實(shí)體而確定另一個(gè)空間實(shí)體的地理位置,有利于進(jìn)行空間位置查詢(xún)和重建空間實(shí)體等。大致算法可描述如下:(1)根據(jù)查詢(xún)要求查找相關(guān)的空間數(shù)據(jù);(2)利用臨近等原則描述空間屬性和特定屬性;(3)根據(jù)最小支持度原則過(guò)濾不重要的數(shù)據(jù);(4)運(yùn)用其它手段對(duì)數(shù)據(jù)進(jìn)一步提純(如OVERLAY);(5)生成關(guān)聯(lián)規(guī)則。

關(guān)聯(lián)規(guī)則通常可分為兩種:布爾型的關(guān)聯(lián)規(guī)則和多值關(guān)聯(lián)規(guī)則。多值關(guān)聯(lián)規(guī)則比較復(fù)雜,一種自然的想法是將它轉(zhuǎn)換為布爾型關(guān)聯(lián)規(guī)則,由于空間關(guān)聯(lián)規(guī)則的挖掘需要在大量的空間對(duì)象中計(jì)算多種空間關(guān)系,因此其代價(jià)是很高的。—種逐步求精的挖掘優(yōu)化方法可用于空間關(guān)聯(lián)的分析,該方法首先用一種快速的算法粗略地對(duì)一個(gè)較大的數(shù)據(jù)集進(jìn)行一次挖掘,然后在裁減過(guò)的數(shù)據(jù)集上用代價(jià)較高的算法進(jìn)一步改進(jìn)挖掘的質(zhì)量。因?yàn)槠浯鷥r(jià)非常高,所以空間的關(guān)聯(lián)方法需要進(jìn)一步的優(yōu)化。

對(duì)于空間數(shù)據(jù),利用關(guān)聯(lián)規(guī)則分析,可以發(fā)現(xiàn)地理位置的關(guān)聯(lián)性。例如,85%的靠近高速公路的大城鎮(zhèn)與水相鄰,或者發(fā)現(xiàn)通常與高爾夫球場(chǎng)相鄰的對(duì)象是停車(chē)場(chǎng)等。

3 空間數(shù)據(jù)挖掘技術(shù)的研究方向

3.1 處理不同類(lèi)型的數(shù)據(jù)

絕大多數(shù)數(shù)據(jù)庫(kù)是關(guān)系型的,因此在關(guān)系數(shù)據(jù)庫(kù)上有效地執(zhí)行數(shù)據(jù)挖掘是至關(guān)重要的。但是在不同應(yīng)用領(lǐng)域中存在各種數(shù)據(jù)和數(shù)據(jù)庫(kù),而且經(jīng)常包含復(fù)雜的數(shù)據(jù)類(lèi)型,例如結(jié)構(gòu)數(shù)據(jù)、復(fù)雜對(duì)象、事務(wù)數(shù)據(jù)、歷史數(shù)據(jù)等。由于數(shù)據(jù)類(lèi)型的多樣性和不同的數(shù)據(jù)挖掘目標(biāo),一個(gè)數(shù)據(jù)挖掘系統(tǒng)不可能處理各種數(shù)據(jù)。因此針對(duì)特定的數(shù)據(jù)類(lèi)型,需要建立特定的數(shù)據(jù)挖掘系統(tǒng)。

3.2 數(shù)據(jù)挖掘算法的有效性和可測(cè)性

海量數(shù)據(jù)庫(kù)通常有上百個(gè)屬性和表及數(shù)百萬(wàn)個(gè)元組。GB數(shù)量級(jí)數(shù)據(jù)庫(kù)已不鮮見(jiàn),TB數(shù)量級(jí)數(shù)據(jù)庫(kù)已經(jīng)出現(xiàn),高維大型數(shù)據(jù)庫(kù)不僅增大了搜索空間,也增加了發(fā)現(xiàn)錯(cuò)誤模式的可能性。因此必須利用領(lǐng)域知識(shí)降低維數(shù),除去無(wú)關(guān)數(shù)據(jù),從而提高算法效率。從一個(gè)大型空間數(shù)據(jù)庫(kù)中抽取知識(shí)的算法必須高效、可測(cè)量,即數(shù)據(jù)挖掘算法的運(yùn)行時(shí)間必須可預(yù)測(cè),且可接受,指數(shù)和多項(xiàng)式復(fù)雜性的算法不具有實(shí)用價(jià)值。但當(dāng)算法用有限數(shù)據(jù)為特定模型尋找適當(dāng)參數(shù)時(shí),有時(shí)也會(huì)導(dǎo)致物超所值,降低效率。

3.3 交互性用戶(hù)界面

數(shù)據(jù)挖掘的結(jié)果應(yīng)準(zhǔn)確地描述數(shù)據(jù)挖掘的要求,并易于表達(dá)。從不同的角度考察發(fā)現(xiàn)的知識(shí),并以不同形式表示,用高層次語(yǔ)言和圖形界面表示數(shù)據(jù)挖掘要求和結(jié)果。目前許多知識(shí)發(fā)現(xiàn)系統(tǒng)和工具缺乏與用戶(hù)的交互,難以有效利用領(lǐng)域知識(shí)。對(duì)此可以利用貝葉斯方法和演譯數(shù)據(jù)庫(kù)本身的演譯能力發(fā)現(xiàn)知識(shí)。

3.4 在多抽象層上交互式挖掘知識(shí)

很難預(yù)測(cè)從數(shù)據(jù)庫(kù)中會(huì)挖掘出什么樣的知識(shí),因此一個(gè)高層次的數(shù)據(jù)挖掘查詢(xún)應(yīng)作為進(jìn)一步探詢(xún)的線(xiàn)索。交互式挖掘使用戶(hù)能交互地定義一個(gè)數(shù)據(jù)挖掘要求,深化數(shù)據(jù)挖掘過(guò)程,從不同角度靈活看待多抽象層上的數(shù)據(jù)挖掘結(jié)果。

3.5 從不同數(shù)據(jù)源挖掘信息

局域網(wǎng)、廣域網(wǎng)以及Internet網(wǎng)將多個(gè)數(shù)據(jù)源聯(lián)成一個(gè)大型分布、異構(gòu)的數(shù)據(jù)庫(kù),從包含不同語(yǔ)義的格式化和非格式化數(shù)據(jù)中挖掘知識(shí)是對(duì)數(shù)據(jù)挖掘的一個(gè)挑戰(zhàn)。數(shù)據(jù)挖掘可揭示大型異構(gòu)數(shù)據(jù)庫(kù)中存在的普通查詢(xún)不能發(fā)現(xiàn)的知識(shí)。數(shù)據(jù)庫(kù)的巨大規(guī)模、廣泛分布及數(shù)據(jù)挖掘方法的計(jì)算復(fù)雜性,要求建立并行分布的數(shù)據(jù)挖掘。

3.6 私有性和安全性

數(shù)據(jù)挖掘能從不同角度、不同抽象層上看待數(shù)據(jù),這將影響到數(shù)據(jù)挖掘的私有性和安全性。通過(guò)研究數(shù)據(jù)挖掘?qū)е碌臄?shù)據(jù)非法侵入,可改進(jìn)數(shù)據(jù)庫(kù)安全方法,以避免信息泄漏。

3.7 和其它系統(tǒng)的集成

方法、功能單一的發(fā)現(xiàn)系統(tǒng)的適用范圍必然受到一定的限制。要想在更廣泛的領(lǐng)域發(fā)現(xiàn)知識(shí),空間數(shù)據(jù)挖掘系統(tǒng)就應(yīng)該是數(shù)據(jù)庫(kù)、知識(shí)庫(kù)、專(zhuān)家系統(tǒng)、決策支持系統(tǒng)、可視化工具、網(wǎng)絡(luò)等技術(shù)的集成。

4 有待研究的問(wèn)題

我們雖然在空間數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用中取得了很大的成績(jī),但在一些理論及應(yīng)用方面仍存在急需解決的問(wèn)題。

4.1 數(shù)據(jù)訪問(wèn)的效率和可伸縮性

空間數(shù)據(jù)的復(fù)雜性和數(shù)據(jù)的大量性,TB數(shù)量級(jí)的數(shù)據(jù)庫(kù)的出現(xiàn),必然增大發(fā)現(xiàn)算法的搜索空間,增加了搜索的盲目性。如何有效的去除與任務(wù)無(wú)關(guān)的數(shù)據(jù),降低問(wèn)題的維數(shù),設(shè)計(jì)出更加高效的挖掘算法對(duì)空間數(shù)據(jù)挖掘提出了巨大的挑戰(zhàn)。

4.2 對(duì)當(dāng)前一些GIS軟件缺乏時(shí)間屬性和靜態(tài)存儲(chǔ)的改進(jìn)

由于數(shù)據(jù)挖掘的應(yīng)用在很大的程度上涉及到時(shí)序關(guān)系,因此靜態(tài)的數(shù)據(jù)存儲(chǔ)嚴(yán)重妨礙了數(shù)據(jù)挖掘的應(yīng)用?;趫D層的計(jì)算模式、不同尺度空間數(shù)據(jù)之間的完全割裂也對(duì)空間數(shù)據(jù)挖掘設(shè)置了重重障礙??臻g實(shí)體與屬性數(shù)據(jù)之間的聯(lián)系僅僅依賴(lài)于標(biāo)識(shí)碼,這種一維的連接方式無(wú)疑將丟失大量的連接信息,不能有效的表示多維和隱含的內(nèi)在連接關(guān)系,這些都增加了數(shù)據(jù)挖掘計(jì)算的復(fù)雜度,極大地增加了數(shù)據(jù)準(zhǔn)備階段的工作量和人工干預(yù)的程度。

4.3 發(fā)現(xiàn)模式的精煉

當(dāng)發(fā)現(xiàn)空間很大時(shí)會(huì)獲得大量的結(jié)果,盡管有些是無(wú)關(guān)或沒(méi)有意義的模式,這時(shí)可利用領(lǐng)域的知識(shí)進(jìn)一步精煉發(fā)現(xiàn)的模式,從而得到有意義的知識(shí)。

在空間數(shù)據(jù)挖掘技術(shù)方面,重要的研究和應(yīng)用的方向還包括:網(wǎng)絡(luò)環(huán)境上的數(shù)據(jù)挖掘、柵格矢量一體化的挖掘、不確定性情況下的數(shù)據(jù)挖掘、分布式環(huán)境下的數(shù)據(jù)挖掘、數(shù)據(jù)挖掘查詢(xún)語(yǔ)言和新的高效的挖掘算法等。

5 小結(jié)

隨著GIS與數(shù)據(jù)挖掘及相關(guān)領(lǐng)域科學(xué)研究的不斷發(fā)展,空間數(shù)據(jù)挖掘技術(shù)在廣度和深度上的不斷深入,在不久的將來(lái),一個(gè)集成了挖掘技術(shù)的GIS、GPS、RS集成系統(tǒng)必將朝著智能化、網(wǎng)絡(luò)化、全球化與大眾化的方向發(fā)展。

電子地圖系統(tǒng)WEBGIS 關(guān)鍵技術(shù)

隨著Internet技術(shù)的不斷發(fā)展和人們對(duì)地理信息系統(tǒng)(GIS)需求的日益增長(zhǎng),利用Internet在Web上發(fā)布空間數(shù)據(jù),為用戶(hù)提供空間數(shù)據(jù)瀏覽、查詢(xún)和分析的功能,已成為地理信息系統(tǒng)(GIS)發(fā)展的必然趨勢(shì)。于是,基于Internet技術(shù)的地理信息系統(tǒng)———WEBGIS就應(yīng)運(yùn)而生。

WEBGIS是一個(gè)將地理信息處理和地理信息分布于Web計(jì)算平臺(tái)進(jìn)行的網(wǎng)絡(luò)化GIS系統(tǒng),它是面向?qū)ο筌浖?gòu)件技術(shù)、信息互操作技術(shù)、網(wǎng)絡(luò)技術(shù)發(fā)展的產(chǎn)物。系統(tǒng)采用ARCGISServer作為WEBGIS支撐平臺(tái)實(shí)現(xiàn)基礎(chǔ)地理空間數(shù)據(jù)和地質(zhì)空間數(shù)據(jù)的網(wǎng)絡(luò)發(fā)布。

1.柵格WEBGIS技術(shù)

“柵格WEBGIS”(Grid WEBGIS)這一概念和產(chǎn)品是對(duì)傳統(tǒng)Web地圖服務(wù)方式的一種革命。啟用這個(gè)名稱(chēng),可謂是一語(yǔ)雙關(guān):就是提供地理底圖的方式來(lái)講,再也不是傳統(tǒng)的方式———服務(wù)器端將矢量地圖臨時(shí)生成柵格圖發(fā)給客戶(hù)端,而是事先生成好柵格圖,用戶(hù)請(qǐng)求時(shí)不必做任何處理就可以即時(shí)發(fā)給客戶(hù)端;就客戶(hù)端的顯示方式來(lái)講,摒棄了傳統(tǒng)的一張地圖的顯示方式,客戶(hù)端采用多幅小圖拼接的方式顯示,總體看起來(lái)像是小圖片填充一個(gè)大的柵格的效果。

預(yù)先制作好所要發(fā)布的地理底圖、遙感影像不同縮放比例下的靜態(tài)圖像存放于服務(wù)器端,待實(shí)際發(fā)布時(shí)根據(jù)縮放比例在不同級(jí)別圖像之間進(jìn)行切換。這種技術(shù)大大提高了地圖的Web瀏覽速度。

2.Web服務(wù)器端技術(shù)

Web服務(wù)器端主要由兩部分組成,即IIS(Internet Information Server)和WEBGIS服務(wù)器(包括ArcIMS組件、InternetGIS站點(diǎn)設(shè)計(jì)向?qū)С绦騑izard及面向城市地質(zhì)Web應(yīng)用的擴(kuò)展組件)。

其中,IIS主要負(fù)責(zé)接收普通的用戶(hù)請(qǐng)求,當(dāng)其需要空間數(shù)據(jù)時(shí)則向WEBGIS服務(wù)器發(fā)出請(qǐng)求,WEBGIS服務(wù)器接收到瀏覽器端的請(qǐng)求后,利用ArcIMS組件和城市地質(zhì)Web應(yīng)用擴(kuò)展組件的功能,進(jìn)行處理、分析、計(jì)算等;如果需要數(shù)據(jù)服務(wù)器的數(shù)據(jù),則由WEBGIS服務(wù)器向數(shù)據(jù)服務(wù)器發(fā)出請(qǐng)求。

3.Web客戶(hù)端相關(guān)技術(shù)

包括IITML、客戶(hù)端腳本語(yǔ)言、VML(矢量可標(biāo)記語(yǔ)言)、XML、DOM(文檔對(duì)象模型)、CSS(層疊樣式表)及Ajax(Asynchronous JavaScript and XML的縮寫(xiě)),這些技術(shù)的綜合運(yùn)用大大擴(kuò)展了系統(tǒng)功能,大幅提高了系統(tǒng)響應(yīng)速度。


文章題目:gis在線(xiàn)監(jiān)測(cè)關(guān)鍵技術(shù) gis在線(xiàn)監(jiān)測(cè)有哪些內(nèi)容
標(biāo)題來(lái)源:http://weahome.cn/article/dopgeis.html

其他資訊

在線(xiàn)咨詢(xún)

微信咨詢(xún)

電話(huà)咨詢(xún)

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部