GIS即地理信息系統(tǒng)(Geographic
讓客戶滿意是我們工作的目標(biāo),不斷超越客戶的期望值來自于我們對這個行業(yè)的熱愛。我們立志把好的技術(shù)通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領(lǐng)域值得信任、有價值的長期合作伙伴,公司提供的服務(wù)項目有:域名與空間、虛擬空間、營銷軟件、網(wǎng)站建設(shè)、泗水網(wǎng)站維護(hù)、網(wǎng)站推廣。
Information
System),廣泛應(yīng)用于資源調(diào)查、環(huán)境評估、災(zāi)害預(yù)測、國土管理、城市規(guī)劃、郵電通訊、交通運輸、軍事公安、水利電力、公共設(shè)施管理、農(nóng)林牧業(yè)、統(tǒng)計、商業(yè)金融等幾乎所有領(lǐng)域。
GIS與其他幾種信息系統(tǒng)密切相關(guān),但由于其處理和分析地理數(shù)據(jù)的能力使其與它們相區(qū)別。盡管沒有什么硬性的和快速的規(guī)則來給這些信息系統(tǒng)分類,但下面的討論可以幫助區(qū)分GIS和桌面制圖、計算機輔助設(shè)計CAD、遙感、DBMS、以及GPS技術(shù)。
桌面制圖
桌面制圖系統(tǒng)用地圖來組織數(shù)據(jù)和用戶交互。這種系統(tǒng)的主要目的是產(chǎn)生地圖:地圖就是數(shù)據(jù)庫。大多數(shù)桌面制圖系統(tǒng)只有及其有限的數(shù)據(jù)管理、空間分析以及個性化能力。桌面制圖系統(tǒng)在桌面計算機上進(jìn)行操作,例如PC機,Macintosh以及小型UNIX工作站。
計算機輔助設(shè)計CAD
計算機輔助設(shè)計(CAD)系統(tǒng)促進(jìn)了產(chǎn)生建筑物和基本建設(shè)的設(shè)計和規(guī)劃。這種設(shè)計需要裝配固有特征的組件來產(chǎn)生整個結(jié)構(gòu)。這些系統(tǒng)需要一些規(guī)則來指明如何裝配這些部件,并具有非常有限的分析能力。CAD系統(tǒng)已經(jīng)擴展可以支持地圖設(shè)計,但管理和分析大型的地理數(shù)據(jù)庫的工具很有限。
遙感和GPS
遙感是一門使用傳感器對地球進(jìn)行測量的科學(xué)和技術(shù),例如,飛機上的照相機,全球定位系統(tǒng)(GPS)接收器,或其他設(shè)備。這些傳感器以圖象的格式收集數(shù)據(jù),并為利用、分析和可視化這些圖象提供專門的功能。由于它缺乏強大的地理數(shù)據(jù)管理和分析作用,所以不能叫作真正的GIS。
數(shù)據(jù)庫管理系統(tǒng)
數(shù)據(jù)庫管理系統(tǒng)專門研究如何存儲和管理所有類型的數(shù)據(jù),其中包括地理數(shù)據(jù)。DBMS使存儲和查找數(shù)據(jù)最優(yōu)化,許多GIS為此而依靠它。相對于GIS而言,它們沒有分析和可視化的工具。
引言
地理信息系統(tǒng)(Geographic Information System,簡稱GIS)是計算機科學(xué)、地理學(xué)、測量學(xué)、地圖學(xué)等多門學(xué)科綜合的技術(shù)[1]。GIS的基本技術(shù)是空間數(shù)據(jù)庫、地圖可視化及空間分析,而空間數(shù)據(jù)庫是GIS的關(guān)鍵??臻g數(shù)據(jù)挖掘技術(shù)作為當(dāng)前數(shù)據(jù)庫技術(shù)最活躍的分支與知識獲取手段,在GIS中的應(yīng)用推動著GIS朝智能化和集成化的方向發(fā)展。
1 空間數(shù)據(jù)庫與空間數(shù)據(jù)挖掘技術(shù)的特點
隨著數(shù)據(jù)庫技術(shù)的不斷發(fā)展和數(shù)據(jù)庫管理系統(tǒng)的廣泛應(yīng)用,數(shù)據(jù)庫中存儲的數(shù)據(jù)量也在急劇增大,在這些海量數(shù)據(jù)的背后隱藏了很多具有決策意義的信息。但是,現(xiàn)今數(shù)據(jù)庫的大多數(shù)應(yīng)用仍然停留在查詢、檢索階段,數(shù)據(jù)庫中隱藏的豐富的知識遠(yuǎn)遠(yuǎn)沒有得到充分的發(fā)掘和利用,數(shù)據(jù)庫中數(shù)據(jù)的急劇增長和人們對數(shù)據(jù)庫處理和理解的困難形成了強烈的反差,導(dǎo)致“人們被數(shù)據(jù)淹沒,但卻饑餓于知識”的現(xiàn)象。
空間數(shù)據(jù)庫(數(shù)據(jù)倉庫)中的空間數(shù)據(jù)除了其顯式信息外,還具有豐富的隱含信息,如數(shù)字高程模型〔DEM或TIN〕,除了載荷高程信息外,還隱含了地質(zhì)巖性與構(gòu)造方面的信息;植物的種類是顯式信息,但其中還隱含了氣候的水平地帶性和垂直地帶性的信息,等等。這些隱含的信息只有通過數(shù)據(jù)挖掘才能顯示出來??臻g數(shù)據(jù)挖掘(Spatial Data Mining,簡稱SDM),或者稱為從空間數(shù)據(jù)庫中發(fā)現(xiàn)知識,是為了解決空間數(shù)據(jù)海量特性而擴展的一個新的數(shù)據(jù)挖掘的研究分支,是指從空間數(shù)據(jù)庫中提取隱含的、用戶感興趣的空間或非空間的模式和普遍特征的過程[2]。由于SDM的對象主要是空間數(shù)據(jù)庫,而空間數(shù)據(jù)庫中不僅存儲了空間事物或?qū)ο蟮膸缀螖?shù)據(jù)、屬性數(shù)據(jù),而且存儲了空間事物或?qū)ο笾g的圖形空間關(guān)系,因此其處理方法有別于一般的數(shù)據(jù)挖掘方法。SDM與傳統(tǒng)的地學(xué)數(shù)據(jù)分析方法的本質(zhì)區(qū)別在于SDM是在沒有明確假設(shè)的前提下去挖掘信息、發(fā)現(xiàn)知識,挖掘出的知識應(yīng)具有事先未知、有效和可實用3個特征。
空間數(shù)據(jù)挖掘技術(shù)需要綜合數(shù)據(jù)挖掘技術(shù)與空間數(shù)據(jù)庫技術(shù),它可用于對空間數(shù)據(jù)的理解,對空間關(guān)系和空間與非空間關(guān)系的發(fā)現(xiàn)、空間知識庫的構(gòu)造以及空間數(shù)據(jù)庫的重組和查詢的優(yōu)化等。
2 空間數(shù)據(jù)挖掘技術(shù)的主要方法及特點
常用的空間數(shù)據(jù)挖掘技術(shù)包括:序列分析、分類分析、預(yù)測、聚類分析、關(guān)聯(lián)規(guī)則分析、時間序列分析、粗集方法及云理論等。本文從挖掘任務(wù)和挖掘方法的角度,著重介紹了分類分析、聚類分析和關(guān)聯(lián)規(guī)則分析三種常用的重要的方法。
2.1、分類分析
分類在數(shù)據(jù)挖掘中是一項非常重要的任務(wù),目前在商業(yè)上應(yīng)用最多。分類的目的是學(xué)會一個分類函數(shù)或分類模型(也常常稱作分類器),該模型能把數(shù)據(jù)庫中的數(shù)據(jù)項映射到給定類別中的某一個。分類和我們熟知的回歸方法都可用于預(yù)測,兩者的目的都是從歷史數(shù)據(jù)紀(jì)錄中自動推導(dǎo)出對給定數(shù)據(jù)的推廣描述,從而能對未來數(shù)據(jù)進(jìn)行預(yù)測。和回歸方法不同的是,分類的輸出是離散的類別值,而回歸的輸出則是連續(xù)的數(shù)值。二者常表現(xiàn)為一棵決策樹,根據(jù)數(shù)據(jù)值從樹根開始搜索,沿著數(shù)據(jù)滿足的分支往上走,走到樹葉就能確定類別??臻g分類的規(guī)則實質(zhì)是對給定數(shù)據(jù)對象集的抽象和概括,可用宏元組表示。
要構(gòu)造分類器,需要有一個訓(xùn)練樣本數(shù)據(jù)集作為輸入。訓(xùn)練集由一組數(shù)據(jù)庫記錄或元組構(gòu)成,每個元組是一個由特征(又稱屬性)值組成的特征向量,此外,訓(xùn)練樣本還有一個類別標(biāo)記。一個具體樣本的形式可為:( v1, v2, ..., vn; c );其中vi表示字段值,c表示類別。
分類器的構(gòu)造方法有統(tǒng)計方法、機器學(xué)習(xí)方法、神經(jīng)網(wǎng)絡(luò)方法等等。統(tǒng)計方法包括貝葉斯法和非參數(shù)法(近鄰學(xué)習(xí)或基于事例的學(xué)習(xí)),對應(yīng)的知識表示是判別函數(shù)和原型事例。機器學(xué)習(xí)方法包括決策樹法和規(guī)則歸納法,前者對應(yīng)的表示為決策樹或判別樹,后者則一般為產(chǎn)生式規(guī)則。神經(jīng)網(wǎng)絡(luò)方法主要是反向傳播(Back-Propagation,簡稱BP)算法,它的模型表示是前向反饋神經(jīng)網(wǎng)絡(luò)模型(由代表神經(jīng)元的節(jié)點和代表聯(lián)接權(quán)值的邊組成的一種體系結(jié)構(gòu)),BP算法本質(zhì)上是一種非線性判別函數(shù)[3]。另外,最近又興起了一種新的方法:粗糙集(rough set),其知識表示是產(chǎn)生式規(guī)則。
不同的分類器有不同的特點。有三種分類器評價或比較尺度:1) 預(yù)測準(zhǔn)確度;2) 計算復(fù)雜度;3) 模型描述的簡潔度。預(yù)測準(zhǔn)確度是用得最多的一種比較尺度,特別是對于預(yù)測型分類任務(wù),目前公認(rèn)的方法是10番分層交叉驗證法。計算復(fù)雜度依賴于具體的實現(xiàn)細(xì)節(jié)和硬件環(huán)境,在數(shù)據(jù)挖掘中,由于操作對象是海量的數(shù)據(jù)庫,因此空間和時間的復(fù)雜度問題將是非常重要的一個環(huán)節(jié)。對于描述型的分類任務(wù),模型描述越簡潔越受歡迎。例如,采用規(guī)則歸納法表示的分類器構(gòu)造法就很有用,而神經(jīng)網(wǎng)絡(luò)方法產(chǎn)生的結(jié)果就難以理解。
另外要注意的是,分類的效果一般和數(shù)據(jù)的特點有關(guān)。有的數(shù)據(jù)噪聲大,有的有缺值, 有的分布稀疏,有的字段或?qū)傩蚤g相關(guān)性強,有的屬性是離散的而有的是連續(xù)值或混合式的。目前普遍認(rèn)為不存在某種方法能適合于各種特點的數(shù)據(jù)。
分類技術(shù)在實際應(yīng)用非常重要,比如:可以根據(jù)房屋的地理位置決定房屋的檔次等。
2. 2 聚類分析
聚類是指根據(jù)“物以類聚”的原理,將本身沒有類別的樣本聚集成不同的組,并且對每一個這樣的組進(jìn)行描述的過程。它的目的是使得屬于同一個組的樣本之間應(yīng)該彼此相似,而不同組的樣本應(yīng)足夠不相似。與分類分析不同,進(jìn)行聚類前并不知道將要劃分成幾個組和什么樣的組,也不知道根據(jù)哪些空間區(qū)分規(guī)則來定義組。其目的旨在發(fā)現(xiàn)空間實體的屬性間的函數(shù)關(guān)系,挖掘的知識用以屬性名為變量的數(shù)學(xué)方程來表示。聚類方法包括統(tǒng)計方法、機器學(xué)習(xí)方法、神經(jīng)網(wǎng)絡(luò)方法和面向數(shù)據(jù)庫的方法?;诰垲惙治龇椒ǖ目臻g數(shù)據(jù)挖掘算法包括均值近似算法[4]、CLARANS、BIRCH、DBSCAN等算法。目前,對空間數(shù)據(jù)聚類分析方法的研究是一個熱點。
對于空間數(shù)據(jù),利用聚類分析方法,可以根據(jù)地理位置以及障礙物的存在情況自動地進(jìn)行區(qū)域劃分。例如,根據(jù)分布在不同地理位置的ATM機的情況將居民進(jìn)行區(qū)域劃分,根據(jù)這一信息,可以有效地進(jìn)行ATM機的設(shè)置規(guī)劃,避免浪費,同時也避免失掉每一個商機。
2.3 關(guān)聯(lián)規(guī)則分析
關(guān)聯(lián)規(guī)則分析主要用于發(fā)現(xiàn)不同事件之間的關(guān)聯(lián)性,即一事物發(fā)生時,另一事物也經(jīng)常發(fā)生。關(guān)聯(lián)分析的重點在于快速發(fā)現(xiàn)那些有實用價值的關(guān)聯(lián)發(fā)生的事件。其主要依據(jù)是:事件發(fā)生的概率和條件概率應(yīng)該符合一定的統(tǒng)計意義??臻g關(guān)聯(lián)規(guī)則的形式是X->Y[S%,C%],其中X、Y是空間或非空間謂詞的集合,S%表示規(guī)則的支持度,C%表示規(guī)則的置信度??臻g謂詞的形式有3種:表示拓?fù)浣Y(jié)構(gòu)的謂詞、表示空間方向的謂詞和表示距離的謂詞[5]。各種各樣的空間謂詞可以構(gòu)成空間關(guān)聯(lián)規(guī)則。如,距離信息(如Close_to(臨近)、Far_away(遠(yuǎn)離))、拓?fù)潢P(guān)系(Intersect(交)、Overlap(重疊)、Disjoin(分離))和空間方位(如Right_of(右邊)、West_of(西邊))。實際上大多數(shù)算法都是利用空間數(shù)據(jù)的關(guān)聯(lián)特性改進(jìn)其分類算法,使得它適合于挖掘空間數(shù)據(jù)中的相關(guān)性,從而可以根據(jù)一個空間實體而確定另一個空間實體的地理位置,有利于進(jìn)行空間位置查詢和重建空間實體等。大致算法可描述如下:(1)根據(jù)查詢要求查找相關(guān)的空間數(shù)據(jù);(2)利用臨近等原則描述空間屬性和特定屬性;(3)根據(jù)最小支持度原則過濾不重要的數(shù)據(jù);(4)運用其它手段對數(shù)據(jù)進(jìn)一步提純(如OVERLAY);(5)生成關(guān)聯(lián)規(guī)則。
關(guān)聯(lián)規(guī)則通常可分為兩種:布爾型的關(guān)聯(lián)規(guī)則和多值關(guān)聯(lián)規(guī)則。多值關(guān)聯(lián)規(guī)則比較復(fù)雜,一種自然的想法是將它轉(zhuǎn)換為布爾型關(guān)聯(lián)規(guī)則,由于空間關(guān)聯(lián)規(guī)則的挖掘需要在大量的空間對象中計算多種空間關(guān)系,因此其代價是很高的。—種逐步求精的挖掘優(yōu)化方法可用于空間關(guān)聯(lián)的分析,該方法首先用一種快速的算法粗略地對一個較大的數(shù)據(jù)集進(jìn)行一次挖掘,然后在裁減過的數(shù)據(jù)集上用代價較高的算法進(jìn)一步改進(jìn)挖掘的質(zhì)量。因為其代價非常高,所以空間的關(guān)聯(lián)方法需要進(jìn)一步的優(yōu)化。
對于空間數(shù)據(jù),利用關(guān)聯(lián)規(guī)則分析,可以發(fā)現(xiàn)地理位置的關(guān)聯(lián)性。例如,85%的靠近高速公路的大城鎮(zhèn)與水相鄰,或者發(fā)現(xiàn)通常與高爾夫球場相鄰的對象是停車場等。
3 空間數(shù)據(jù)挖掘技術(shù)的研究方向
3.1 處理不同類型的數(shù)據(jù)
絕大多數(shù)數(shù)據(jù)庫是關(guān)系型的,因此在關(guān)系數(shù)據(jù)庫上有效地執(zhí)行數(shù)據(jù)挖掘是至關(guān)重要的。但是在不同應(yīng)用領(lǐng)域中存在各種數(shù)據(jù)和數(shù)據(jù)庫,而且經(jīng)常包含復(fù)雜的數(shù)據(jù)類型,例如結(jié)構(gòu)數(shù)據(jù)、復(fù)雜對象、事務(wù)數(shù)據(jù)、歷史數(shù)據(jù)等。由于數(shù)據(jù)類型的多樣性和不同的數(shù)據(jù)挖掘目標(biāo),一個數(shù)據(jù)挖掘系統(tǒng)不可能處理各種數(shù)據(jù)。因此針對特定的數(shù)據(jù)類型,需要建立特定的數(shù)據(jù)挖掘系統(tǒng)。
3.2 數(shù)據(jù)挖掘算法的有效性和可測性
海量數(shù)據(jù)庫通常有上百個屬性和表及數(shù)百萬個元組。GB數(shù)量級數(shù)據(jù)庫已不鮮見,TB數(shù)量級數(shù)據(jù)庫已經(jīng)出現(xiàn),高維大型數(shù)據(jù)庫不僅增大了搜索空間,也增加了發(fā)現(xiàn)錯誤模式的可能性。因此必須利用領(lǐng)域知識降低維數(shù),除去無關(guān)數(shù)據(jù),從而提高算法效率。從一個大型空間數(shù)據(jù)庫中抽取知識的算法必須高效、可測量,即數(shù)據(jù)挖掘算法的運行時間必須可預(yù)測,且可接受,指數(shù)和多項式復(fù)雜性的算法不具有實用價值。但當(dāng)算法用有限數(shù)據(jù)為特定模型尋找適當(dāng)參數(shù)時,有時也會導(dǎo)致物超所值,降低效率。
3.3 交互性用戶界面
數(shù)據(jù)挖掘的結(jié)果應(yīng)準(zhǔn)確地描述數(shù)據(jù)挖掘的要求,并易于表達(dá)。從不同的角度考察發(fā)現(xiàn)的知識,并以不同形式表示,用高層次語言和圖形界面表示數(shù)據(jù)挖掘要求和結(jié)果。目前許多知識發(fā)現(xiàn)系統(tǒng)和工具缺乏與用戶的交互,難以有效利用領(lǐng)域知識。對此可以利用貝葉斯方法和演譯數(shù)據(jù)庫本身的演譯能力發(fā)現(xiàn)知識。
3.4 在多抽象層上交互式挖掘知識
很難預(yù)測從數(shù)據(jù)庫中會挖掘出什么樣的知識,因此一個高層次的數(shù)據(jù)挖掘查詢應(yīng)作為進(jìn)一步探詢的線索。交互式挖掘使用戶能交互地定義一個數(shù)據(jù)挖掘要求,深化數(shù)據(jù)挖掘過程,從不同角度靈活看待多抽象層上的數(shù)據(jù)挖掘結(jié)果。
3.5 從不同數(shù)據(jù)源挖掘信息
局域網(wǎng)、廣域網(wǎng)以及Internet網(wǎng)將多個數(shù)據(jù)源聯(lián)成一個大型分布、異構(gòu)的數(shù)據(jù)庫,從包含不同語義的格式化和非格式化數(shù)據(jù)中挖掘知識是對數(shù)據(jù)挖掘的一個挑戰(zhàn)。數(shù)據(jù)挖掘可揭示大型異構(gòu)數(shù)據(jù)庫中存在的普通查詢不能發(fā)現(xiàn)的知識。數(shù)據(jù)庫的巨大規(guī)模、廣泛分布及數(shù)據(jù)挖掘方法的計算復(fù)雜性,要求建立并行分布的數(shù)據(jù)挖掘。
3.6 私有性和安全性
數(shù)據(jù)挖掘能從不同角度、不同抽象層上看待數(shù)據(jù),這將影響到數(shù)據(jù)挖掘的私有性和安全性。通過研究數(shù)據(jù)挖掘?qū)е碌臄?shù)據(jù)非法侵入,可改進(jìn)數(shù)據(jù)庫安全方法,以避免信息泄漏。
3.7 和其它系統(tǒng)的集成
方法、功能單一的發(fā)現(xiàn)系統(tǒng)的適用范圍必然受到一定的限制。要想在更廣泛的領(lǐng)域發(fā)現(xiàn)知識,空間數(shù)據(jù)挖掘系統(tǒng)就應(yīng)該是數(shù)據(jù)庫、知識庫、專家系統(tǒng)、決策支持系統(tǒng)、可視化工具、網(wǎng)絡(luò)等技術(shù)的集成。
4 有待研究的問題
我們雖然在空間數(shù)據(jù)挖掘技術(shù)的研究和應(yīng)用中取得了很大的成績,但在一些理論及應(yīng)用方面仍存在急需解決的問題。
4.1 數(shù)據(jù)訪問的效率和可伸縮性
空間數(shù)據(jù)的復(fù)雜性和數(shù)據(jù)的大量性,TB數(shù)量級的數(shù)據(jù)庫的出現(xiàn),必然增大發(fā)現(xiàn)算法的搜索空間,增加了搜索的盲目性。如何有效的去除與任務(wù)無關(guān)的數(shù)據(jù),降低問題的維數(shù),設(shè)計出更加高效的挖掘算法對空間數(shù)據(jù)挖掘提出了巨大的挑戰(zhàn)。
4.2 對當(dāng)前一些GIS軟件缺乏時間屬性和靜態(tài)存儲的改進(jìn)
由于數(shù)據(jù)挖掘的應(yīng)用在很大的程度上涉及到時序關(guān)系,因此靜態(tài)的數(shù)據(jù)存儲嚴(yán)重妨礙了數(shù)據(jù)挖掘的應(yīng)用?;趫D層的計算模式、不同尺度空間數(shù)據(jù)之間的完全割裂也對空間數(shù)據(jù)挖掘設(shè)置了重重障礙??臻g實體與屬性數(shù)據(jù)之間的聯(lián)系僅僅依賴于標(biāo)識碼,這種一維的連接方式無疑將丟失大量的連接信息,不能有效的表示多維和隱含的內(nèi)在連接關(guān)系,這些都增加了數(shù)據(jù)挖掘計算的復(fù)雜度,極大地增加了數(shù)據(jù)準(zhǔn)備階段的工作量和人工干預(yù)的程度。
4.3 發(fā)現(xiàn)模式的精煉
當(dāng)發(fā)現(xiàn)空間很大時會獲得大量的結(jié)果,盡管有些是無關(guān)或沒有意義的模式,這時可利用領(lǐng)域的知識進(jìn)一步精煉發(fā)現(xiàn)的模式,從而得到有意義的知識。
在空間數(shù)據(jù)挖掘技術(shù)方面,重要的研究和應(yīng)用的方向還包括:網(wǎng)絡(luò)環(huán)境上的數(shù)據(jù)挖掘、柵格矢量一體化的挖掘、不確定性情況下的數(shù)據(jù)挖掘、分布式環(huán)境下的數(shù)據(jù)挖掘、數(shù)據(jù)挖掘查詢語言和新的高效的挖掘算法等。
5 小結(jié)
隨著GIS與數(shù)據(jù)挖掘及相關(guān)領(lǐng)域科學(xué)研究的不斷發(fā)展,空間數(shù)據(jù)挖掘技術(shù)在廣度和深度上的不斷深入,在不久的將來,一個集成了挖掘技術(shù)的GIS、GPS、RS集成系統(tǒng)必將朝著智能化、網(wǎng)絡(luò)化、全球化與大眾化的方向發(fā)展。
1、資源管理
主要應(yīng)用于農(nóng)業(yè)和林業(yè)領(lǐng)域,解決農(nóng)業(yè)和林業(yè)領(lǐng)域各種資源(如土地、森林、草場)分布、分級、統(tǒng)計、制圖等問題。主要回答“定位”和“模式”兩類問題。
2、資源配置?
在城市中各種公用設(shè)施、救災(zāi)減災(zāi)中物資的分配、全國范圍內(nèi)能源保障、糧食供應(yīng)等到機構(gòu)的在各地的配置等都是資源配置問題。GIS在這類應(yīng)用中的目標(biāo)是保證資源的最合理配置和發(fā)揮最大效益。
3、城市規(guī)劃和管理
空間規(guī)劃是GIS的一個重要應(yīng)用領(lǐng)域,城市規(guī)劃和管理是其中的主要內(nèi)容。例如,在大規(guī)模城市基礎(chǔ)設(shè)施建設(shè)中如何保證綠地的比例和合理分布、如何保證學(xué)校、公共設(shè)施、運動場所、服務(wù)設(shè)施等能夠有最大的服務(wù)面(城市資源配置問題)等。
4、土地信息系統(tǒng)和地籍管理
土地和地籍管理涉及土地使用性質(zhì)變化、地塊輪廓變化、地籍權(quán)屬關(guān)系變化等許多內(nèi)容,借助GIS技術(shù)可以高效、高質(zhì)量地完成這些工作。
5、生態(tài)、環(huán)境管理與模擬
區(qū)域生態(tài)規(guī)劃、環(huán)境現(xiàn)狀評價、環(huán)境影響評價、污染物削減分配的決策支持、環(huán)境與區(qū)域可持續(xù)發(fā)展的決策支持、環(huán)保設(shè)施的管理、環(huán)境規(guī)劃等。
6、應(yīng)急響應(yīng)
解決在發(fā)生洪水、戰(zhàn)爭、核事故等重大自然或人為災(zāi)害時,如何安排最佳的人員撤離路線、并配備相應(yīng)的運輸和保障設(shè)施的問題。
擴展資料:
GIS的特點
1、公共的地理定位基礎(chǔ);
2、具有采集、管理、分析和輸出多種地理空間信息的能力;
3、系統(tǒng)以分析模型驅(qū)動,具有極強的空間綜合分析和動態(tài)預(yù)測能力,并能產(chǎn)生高層次的地理信息;
4、以地理研究和地理決策為目的,是一個人機交互式的空間決策支持系統(tǒng)。
發(fā)展空間:
許多學(xué)科受益于地理信息系統(tǒng)技術(shù)。活躍的地理信息系統(tǒng)市場導(dǎo)致了GIS組件的硬件和軟件的低成本和持續(xù)改進(jìn)。這些發(fā)展反過來導(dǎo)致這項技術(shù)在科學(xué)、政府、企業(yè)和產(chǎn)業(yè)等方面更廣泛的應(yīng)用。
應(yīng)用包括房地產(chǎn)、公共衛(wèi)生、犯罪地圖、國防、可持續(xù)發(fā)展、自然資源、景觀建筑、考古學(xué)、社區(qū)規(guī)劃、運輸和物流。地理信息系統(tǒng)也分化出定位服務(wù)(LBS)。
參考資料來源:百度百科--地理信息系統(tǒng)
參考資料來源:百度百科--GIS軟件