真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

自動(dòng)分箱函數(shù)python 分箱 python

python用卡方檢驗(yàn),自動(dòng)分箱,結(jié)果是否可靠有待驗(yàn)證

def calc_chiSquare(sampleSet, feature, target):

創(chuàng)新互聯(lián)專注于企業(yè)全網(wǎng)整合營(yíng)銷推廣、網(wǎng)站重做改版、朝陽(yáng)網(wǎng)站定制設(shè)計(jì)、自適應(yīng)品牌網(wǎng)站建設(shè)、html5商城建設(shè)、集團(tuán)公司官網(wǎng)建設(shè)、外貿(mào)網(wǎng)站制作、高端網(wǎng)站制作、響應(yīng)式網(wǎng)頁(yè)設(shè)計(jì)等建站業(yè)務(wù),價(jià)格優(yōu)惠性價(jià)比高,為朝陽(yáng)等各大城市提供網(wǎng)站開(kāi)發(fā)制作服務(wù)。

'''

計(jì)算某個(gè)特征每種屬性值的卡方統(tǒng)計(jì)量

params:

? ? sampleSet: 樣本集

? ? feature: 目標(biāo)特征

? ? target: 目標(biāo)Y值 (0或1) Y值為二分類變量

return:

? ? 卡方統(tǒng)計(jì)量dataframe

? ? feature: 特征名稱

? ? act_target_cnt: 實(shí)際壞樣本數(shù)

? ? expected_target_cnt:期望壞樣本數(shù)

? ? chi_square:卡方統(tǒng)計(jì)量

'''

# 計(jì)算樣本期望頻率

target_cnt = sampleSet[target].sum()

sample_cnt = len(sampleSet[target])

expected_ratio = target_cnt * 1.0/sample_cnt

# 對(duì)變量按屬性值從大到小排序

df = sampleSet[[feature, target]]

col_value = list(set(df[feature]))?

# 計(jì)算每一個(gè)屬性值對(duì)應(yīng)的卡方統(tǒng)計(jì)量等信息

chi_list = []; target_list = []; expected_target_list = []

for value in col_value:

? ? df_target_cnt = df.loc[df[feature] == value, target].sum()

? ? df_cnt = len(df.loc[df[feature] == value, target])

? ? expected_target_cnt = df_cnt * expected_ratio

? ? chi_square = (df_target_cnt - expected_target_cnt)**2 / expected_target_cnt

? ? chi_list.append(chi_square)

? ? target_list.append(df_target_cnt)

? ? expected_target_list.append(expected_target_cnt)

# 結(jié)果輸出到dataframe, 對(duì)應(yīng)字段為特征屬性值, 卡方統(tǒng)計(jì)量, 實(shí)際壞樣本量, 期望壞樣本量

chi_stats = pd.DataFrame({feature:col_value, 'chi_square':chi_list,

? ? ? ? ? ? ? ? ? ? ? ? ? 'act_target_cnt':target_list, 'expected_target_cnt':expected_target_list})

return chi_stats[[feature, 'act_target_cnt', 'expected_target_cnt', 'chi_square']]

def chiMerge_maxInterval(chi_stats, feature, maxInterval=5):

'''

卡方分箱合并--最大區(qū)間限制法

params:

? ? chi_stats: 卡方統(tǒng)計(jì)量dataframe

? ? feature: 目標(biāo)特征

? ? maxInterval:最大分箱數(shù)閾值

return:

? ? 卡方合并結(jié)果dataframe, 特征分割split_list

'''

group_cnt = len(chi_stats)

split_list = [chi_stats[feature].min()]

# 如果變量區(qū)間超過(guò)最大分箱限制,則根據(jù)合并原則進(jìn)行合并

while(group_cnt maxInterval):

? ? min_index = chi_stats[chi_stats['chi_square']==chi_stats['chi_square'].min()].index.tolist()[0]

? ? # 如果分箱區(qū)間在最前,則向下合并

? ? if min_index == 0:

? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index+1, min_index)

? ? # 如果分箱區(qū)間在最后,則向上合并

? ? elif min_index == group_cnt-1:

? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index-1, min_index)

? ? # 如果分箱區(qū)間在中間,則判斷與其相鄰的最小卡方的區(qū)間,然后進(jìn)行合并

? ? else:

? ? ? ? if chi_stats.loc[min_index-1, 'chi_square'] chi_stats.loc[min_index+1, 'chi_square']:

? ? ? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index, min_index+1)

? ? ? ? else:

? ? ? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index-1, min_index)

? ? group_cnt = len(chi_stats)

chiMerge_result = chi_stats

split_list.extend(chiMerge_result[feature].tolist())

return chiMerge_result, split_list

def chiMerge_minChiSquare(chi_stats, feature, dfree=4, cf=0.1, maxInterval=5):

'''

卡方分箱合并--卡方閾值法

params:

? ? chi_stats: 卡方統(tǒng)計(jì)量dataframe

? ? feature: 目標(biāo)特征

? ? maxInterval: 最大分箱數(shù)閾值, default 5

? ? dfree: 自由度, 最大分箱數(shù)-1, default 4

? ? cf: 顯著性水平, default 10%

return:

? ? 卡方合并結(jié)果dataframe, 特征分割split_list

'''

threshold = get_chiSquare_distuibution(dfree, cf)

min_chiSquare = chi_stats['chi_square'].min()

group_cnt = len(chi_stats)

split_list = [chi_stats[feature].min()]

# 如果變量區(qū)間的最小卡方值小于閾值,則繼續(xù)合并直到最小值大于等于閾值

while(min_chiSquare threshold and group_cnt maxInterval):

? ? min_index = chi_stats[chi_stats['chi_square']==chi_stats['chi_square'].min()].index.tolist()[0]

? ? # 如果分箱區(qū)間在最前,則向下合并

? ? if min_index == 0:

? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index+1, min_index)

? ? # 如果分箱區(qū)間在最后,則向上合并

? ? elif min_index == group_cnt-1:

? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index-1, min_index)

? ? # 如果分箱區(qū)間在中間,則判斷與其相鄰的最小卡方的區(qū)間,然后進(jìn)行合并

? ? else:

? ? ? ? if chi_stats.loc[min_index-1, 'chi_square'] chi_stats.loc[min_index+1, 'chi_square']:

? ? ? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index, min_index+1)

? ? ? ? else:

? ? ? ? ? ? chi_stats = merge_chiSquare(chi_stats, min_index-1, min_index)

? ? min_chiSquare = chi_stats['chi_square'].min()

? ? group_cnt = len(chi_stats)

chiMerge_result = chi_stats

split_list.extend(chiMerge_result[feature].tolist())

return chiMerge_result, split_list

def get_chiSquare_distuibution(dfree=4, cf=0.1):

'''

根據(jù)自由度和置信度得到卡方分布和閾值

params:

? ? dfree: 自由度, 最大分箱數(shù)-1, default 4

? ? cf: 顯著性水平, default 10%

return:

? ? 卡方閾值

'''

percents = [0.95, 0.90, 0.5, 0.1, 0.05, 0.025, 0.01, 0.005]

df = pd.DataFrame(np.array([chi2.isf(percents, df=i) for i in range(1, 30)]))

df.columns = percents

df.index = df.index+1

# 顯示小數(shù)點(diǎn)后面數(shù)字

pd.set_option('precision', 3)

return df.loc[dfree, cf]

def merge_chiSquare(chi_result, index, mergeIndex, a = 'expected_target_cnt',

? ? ? ? ? ? ? ? b = 'act_target_cnt', c = 'chi_square'):

'''

params:

? ? chi_result: 待合并卡方數(shù)據(jù)集

? ? index: 合并后的序列號(hào)

? ? mergeIndex: 需合并的區(qū)間序號(hào)

? ? a, b, c: 指定合并字段

return:

? ? 分箱合并后的卡方dataframe

'''

chi_result.loc[mergeIndex, a] = chi_result.loc[mergeIndex, a] + chi_result.loc[index, a]

chi_result.loc[mergeIndex, b] = chi_result.loc[mergeIndex, b] + chi_result.loc[index, b]

chi_result.loc[mergeIndex, c] = (chi_result.loc[mergeIndex, b] - chi_result.loc[mergeIndex, a])**2 /chi_result.loc[mergeIndex, a]

chi_result = chi_result.drop([index])

chi_result = chi_result.reset_index(drop=True)

return chi_result

for col in bin_col:

chi_stats = calc_chiSquare(exp_f_data_label_dr, col, 'label')

chiMerge_result, split_list = chiMerge_maxInterval(chi_stats, col, maxInterval=5)

print(col, 'feature maybe split like this:', split_list)

快速分箱方法

2018.08.02

R語(yǔ)言中有smbining可以進(jìn)行最優(yōu)分箱,python中分箱如果既要考慮箱體個(gè)數(shù),分箱后信息量大小,也要考慮單調(diào)性等其他因素。

這里給出一種簡(jiǎn)單的通過(guò)IV值來(lái)選擇如果分箱的方法。

下面是按照分位數(shù)來(lái)分的,還可以按照卡房分箱,決策樹(shù)分箱等。

參照toad(由厚本金融開(kāi)發(fā)的較標(biāo)準(zhǔn)的評(píng)分卡開(kāi)發(fā)開(kāi)源包)的分箱方式。

python 有沒(méi)有smbinning

R包有 smbinning CRAN - Package smbinning

SAS中 這本 信用風(fēng)險(xiǎn)評(píng)分卡研究 (豆瓣) P140 有提及 SAS 實(shí)現(xiàn)自動(dòng)分箱的宏,SAS代碼在書(shū)本的附錄。

還有這里講解了決策樹(shù)的三個(gè)處理方法,自動(dòng)分箱的原理基本就是利用決策樹(shù)做單變量的分支 Decision Tree Algorithms !

如何在python中實(shí)現(xiàn)數(shù)據(jù)的最優(yōu)分箱

Monotonic Binning with Python

Monotonic binning is a data preparation technique widely used in scorecard development and is usually implemented with SAS. Below is an attempt to do the monotonic binning with python.

Python Code:

# import packages

import pandas as pd

import numpy as np

import scipy.stats.stats as stats

# import data

data = pd.read_csv("/home/liuwensui/Documents/data/accepts.csv", sep = ",", header = 0)

# define a binning function

def mono_bin(Y, X, n = 20):

# fill missings with median

X2 = X.fillna(np.median(X))

r = 0

while np.abs(r) 1:

d1 = pd.DataFrame({"X": X2, "Y": Y, "Bucket": pd.qcut(X2, n)})

d2 = d1.groupby('Bucket', as_index = True)

r, p = stats.spearmanr(d2.mean().X, d2.mean().Y)

n = n - 1

d3 = pd.DataFrame(d2.min().X, columns = ['min_' + X.name])

d3['max_' + X.name] = d2.max().X

d3[Y.name] = d2.sum().Y

d3['total'] = d2.count().Y

d3[Y.name + '_rate'] = d2.mean().Y

d4 = (d3.sort_index(by = 'min_' + X.name)).reset_index(drop = True)

print "=" * 60

print d4

mono_bin(data.bad, data.ltv)

mono_bin(data.bad, data.bureau_score)

mono_bin(data.bad, data.age_oldest_tr)

mono_bin(data.bad, data.tot_tr)

mono_bin(data.bad, data.tot_income)

Output:

============================================================

min_ltv max_ltv bad total bad_rate

0 0 83 88 884 0.099548

1 84 92 137 905 0.151381

2 93 98 175 851 0.205640

3 99 102 173 814 0.212531

4 103 108 194 821 0.236297

5 109 116 194 769 0.252276

6 117 176 235 793 0.296343

============================================================

min_bureau_score max_bureau_score bad total bad_rate

0 443 630 325 747 0.435074

1 631 655 242 721 0.335645

2 656 676 173 721 0.239945

3 677 698 245 1059 0.231350

4 699 709 64 427 0.149883

5 710 732 73 712 0.102528

6 733 763 53 731 0.072503

7 764 848 21 719 0.029207

============================================================

min_age_oldest_tr max_age_oldest_tr bad total bad_rate

0 1 59 319 987 0.323202

1 60 108 235 975 0.241026

2 109 142 282 1199 0.235196

3 143 171 142 730 0.194521

4 172 250 125 976 0.128074

5 251 588 93 970 0.095876

============================================================

min_tot_tr max_tot_tr bad total bad_rate

0 0 8 378 1351 0.279793

1 9 13 247 1025 0.240976

2 14 18 240 1185 0.202532

3 19 25 165 1126 0.146536

4 26 77 166 1150 0.144348

============================================================

min_tot_income max_tot_income bad total bad_rate

0 0.00 2000.00 323 1217 0.265407

1 2002.00 2916.67 259 1153 0.224631

2 2919.00 4000.00 226 1150 0.196522

3 4001.00 5833.33 231 1186 0.194772

4 5833.34 8147166.66 157 1131 0.138815

python最優(yōu)分箱中woe計(jì)算(求大圣)

list =[None,None,None,None,"a","b","c",None,"d",12,None,2,4,5,4] list = list[4:] len(list)11 list['a', 'b', 'c', None, 'd', 12, None, 2, 4, 5, 4]#如果你的list 格式是相同的 比如前面4個(gè)都是None,這個(gè)格式是固定的,那么切片很容易解決


當(dāng)前文章:自動(dòng)分箱函數(shù)python 分箱 python
文章轉(zhuǎn)載:http://weahome.cn/article/doscdgg.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部