參考:
十年的零陵網(wǎng)站建設(shè)經(jīng)驗,針對設(shè)計、前端、開發(fā)、售后、文案、推廣等六對一服務(wù),響應(yīng)快,48小時及時工作處理。營銷型網(wǎng)站的優(yōu)勢是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動調(diào)整零陵建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計,從而大程度地提升瀏覽體驗。創(chuàng)新互聯(lián)從事“零陵網(wǎng)站設(shè)計”,“零陵網(wǎng)站推廣”以來,每個客戶項目都認真落實執(zhí)行。
Goroutine并發(fā)調(diào)度模型深度解析手擼一個協(xié)程池
Golang 的 goroutine 是如何實現(xiàn)的?
Golang - 調(diào)度剖析【第二部分】
OS線程初始棧為2MB。Go語言中,每個goroutine采用動態(tài)擴容方式,初始2KB,按需增長,最大1G。此外GC會收縮??臻g。
BTW,增長擴容都是有代價的,需要copy數(shù)據(jù)到新的stack,所以初始2KB可能有些性能問題。
更多關(guān)于stack的內(nèi)容,可以參見大佬的文章。 聊一聊goroutine stack
用戶線程的調(diào)度以及生命周期管理都是用戶層面,Go語言自己實現(xiàn)的,不借助OS系統(tǒng)調(diào)用,減少系統(tǒng)資源消耗。
Go語言采用兩級線程模型,即用戶線程與內(nèi)核線程KSE(kernel scheduling entity)是M:N的。最終goroutine還是會交給OS線程執(zhí)行,但是需要一個中介,提供上下文。這就是G-M-P模型
Go調(diào)度器有兩個不同的運行隊列:
go1.10\src\runtime\runtime2.go
Go調(diào)度器根據(jù)事件進行上下文切換。
調(diào)度的目的就是防止M堵塞,空閑,系統(tǒng)進程切換。
詳見 Golang - 調(diào)度剖析【第二部分】
Linux可以通過epoll實現(xiàn)網(wǎng)絡(luò)調(diào)用,統(tǒng)稱網(wǎng)絡(luò)輪詢器N(Net Poller)。
文件IO操作
上面都是防止M堵塞,任務(wù)竊取是防止M空閑
每個M都有一個特殊的G,g0。用于執(zhí)行調(diào)度,gc,棧管理等任務(wù),所以g0的棧稱為調(diào)度棧。g0的棧不會自動增長,不會被gc,來自os線程的棧。
go1.10\src\runtime\proc.go
G沒辦法自己運行,必須通過M運行
M通過通過調(diào)度,執(zhí)行G
從M掛載P的runq中找到G,執(zhí)行G
首先,看一下TCP握手簡單描繪過程:
其握手過程原理,就不必說了,有很多詳細文章進行敘述,本文只關(guān)注研究重點。
在第三次握手過程中,如果服務(wù)器收到ACK,就會與客戶端建立連接,此時內(nèi)核會把連接從半連接隊列移除,然后創(chuàng)建新的連接,并將其添加到全連接隊列,等待進程調(diào)用。
如果服務(wù)器繁忙,來不及調(diào)用連接導致全連接隊列溢出,服務(wù)器就會放棄當前握手連接,發(fā)送RST給客戶端,即connection reset by peer。
在linux平臺上,客戶端在進行高并發(fā)TCP連接處理時,最高并發(fā)數(shù)量都要受系統(tǒng)對用戶單一進程同時打開文件數(shù)量的限制(這是因為系統(tǒng)每個TCP都是SOCKET句柄,每個soker句柄都是一個文件),當打開連接超過限制,就會出現(xiàn)too many open files。
使用下指令查看最大句柄數(shù)量:
增加句柄解決方案
此文是根據(jù)周洋在【高可用架構(gòu)群】中的分享內(nèi)容整理而成,轉(zhuǎn)發(fā)請注明出處。 周洋,360手機助手技術(shù)經(jīng)理及架構(gòu)師,負責360長連接消息系統(tǒng),360手機助手架構(gòu)的開發(fā)與維護。 不知道咱們?nèi)好裁磿r候改為“Python高可用架構(gòu)群”了,所以不得不說,很榮幸能在接下來的一個小時里在Python群里討論golang....360消息系統(tǒng)介紹 360消息系統(tǒng)更確切的說是長連接push系統(tǒng),目前服務(wù)于360內(nèi)部多個產(chǎn)品,開發(fā)平臺數(shù)千款app,也支持部分聊天業(yè)務(wù)場景,單通道多app復用,支持上行數(shù)據(jù),提供接入方不同粒度的上行數(shù)據(jù)和用戶狀態(tài)回調(diào)服務(wù)。 目前整個系統(tǒng)按不同業(yè)務(wù)分成9個功能完整的集群,部署在多個idc上(每個集群覆蓋不同的idc),實時在線數(shù)億量級。通常情況下,pc,手機,甚至是智能硬件上的360產(chǎn)品的push消息,基本上是從我們系統(tǒng)發(fā)出的。 關(guān)于push系統(tǒng)對比與性能指標的討論 很多同行比較關(guān)心go語言在實現(xiàn)push系統(tǒng)上的性能問題,單機性能究竟如何,能否和其他語言實現(xiàn)的類似系統(tǒng)做對比么?甚至問如果是創(chuàng)業(yè),第三方云推送平臺,推薦哪個? 其實各大廠都有類似的push系統(tǒng),市場上也有類似功能的云服務(wù)。包括我們公司早期也有erlang,nodejs實現(xiàn)的類似系統(tǒng),也一度被公司要求做類似的對比測試。我感覺在討論對比數(shù)據(jù)的時候,很難保證大家環(huán)境和需求的統(tǒng)一,我只能說下我這里的體會,數(shù)據(jù)是有的,但這個數(shù)據(jù)前面估計會有很多定語~ 第一個重要指標:單機的連接數(shù)指標 做過長連接的同行,應(yīng)該有體會,如果在穩(wěn)定連接情況下,連接數(shù)這個指標,在沒有網(wǎng)絡(luò)吞吐情況下對比,其實意義往往不大,維持連接消耗cpu資源很小,每條連接tcp協(xié)議棧會占約4k的內(nèi)存開銷,系統(tǒng)參數(shù)調(diào)整后,我們單機測試數(shù)據(jù),最高也是可以達到單實例300w長連接。但做更高的測試,我個人感覺意義不大。 因為實際網(wǎng)絡(luò)環(huán)境下,單實例300w長連接,從理論上算壓力就很大:實際弱網(wǎng)絡(luò)環(huán)境下,移動客戶端的斷線率很高,假設(shè)每秒有1000分之一的用戶斷線重連。300w長連接,每秒新建連接達到3w,這同時連入的3w用戶,要進行注冊,加載離線存儲等對內(nèi)rpc調(diào)用,另外300w長連接的用戶心跳需要維持,假設(shè)心跳300s一次,心跳包每秒需要1w tps。單播和多播數(shù)據(jù)的轉(zhuǎn)發(fā),廣播數(shù)據(jù)的轉(zhuǎn)發(fā),本身也要響應(yīng)內(nèi)部的rpc調(diào)用,300w長連接情況下,gc帶來的壓力,內(nèi)部接口的響應(yīng)延遲能否穩(wěn)定保障。這些集中在一個實例中,可用性是一個挑戰(zhàn)。所以線上單實例不會hold很高的長連接,實際情況也要根據(jù)接入客戶端網(wǎng)絡(luò)狀況來決定。 第二個重要指標:消息系統(tǒng)的內(nèi)存使用量指標 這一點上,使用go語言情況下,由于協(xié)程的原因,會有一部分額外開銷。但是要做兩個推送系統(tǒng)的對比,也有些需要確定問題。比如系統(tǒng)從設(shè)計上是否需要全雙工(即讀寫是否需要同時進行)如果半雙工,理論上對一個用戶的連接只需要使用一個協(xié)程即可(這種情況下,對用戶的斷線檢測可能會有延時),如果是全雙工,那讀/寫各一個協(xié)程。兩種場景內(nèi)存開銷是有區(qū)別的。 另外測試數(shù)據(jù)的大小往往決定我們對連接上設(shè)置的讀寫buffer是多大,是全局復用的,還是每個連接上獨享的,還是動態(tài)申請的。另外是否全雙工也決定buffer怎么開。不同的策略,可能在不同情況的測試中表現(xiàn)不一樣。 第三個重要指標:每秒消息下發(fā)量 這一點上,也要看我們對消息到達的QoS級別(回復ack策略區(qū)別),另外看架構(gòu)策略,每種策略有其更適用的場景,是純粹推?還是推拉結(jié)合?甚至是否開啟了消息日志?日志庫的實現(xiàn)機制、以及緩沖開多大?flush策略……這些都影響整個系統(tǒng)的吞吐量。 另外為了HA,增加了內(nèi)部通信成本,為了避免一些小概率事件,提供閃斷補償策略,這些都要考慮進去。如果所有的都去掉,那就是比較基礎(chǔ)庫的性能了。 所以我只能給出大概數(shù)據(jù),24核,64G的服務(wù)器上,在QoS為message at least,純粹推,消息體256B~1kB情況下,單個實例100w實際用戶(200w+)協(xié)程,峰值可以達到2~5w的QPS...內(nèi)存可以穩(wěn)定在25G左右,gc時間在200~800ms左右(還有優(yōu)化空間)。 我們正常線上單實例用戶控制在80w以內(nèi),單機最多兩個實例。事實上,整個系統(tǒng)在推送的需求上,對高峰的輸出不是提速,往往是進行限速,以防push系統(tǒng)瞬時的高吞吐量,轉(zhuǎn)化成對接入方業(yè)務(wù)服務(wù)器的ddos攻擊所以對于性能上,我感覺大家可以放心使用,至少在我們這個量級上,經(jīng)受過考驗,go1.5到來后,確實有之前投資又增值了的感覺。 消息系統(tǒng)架構(gòu)介紹 下面是對消息系統(tǒng)的大概介紹,之前一些同學可能在gopher china上可以看到分享,這里簡單講解下架構(gòu)和各個組件功能,額外補充一些當時遺漏的信息: 架構(gòu)圖如下,所有的service都 written by golang.幾個大概重要組件介紹如下: dispatcher service根據(jù)客戶端請求信息,將應(yīng)網(wǎng)絡(luò)和區(qū)域的長連接服務(wù)器的,一組IP傳送給客戶端。客戶端根據(jù)返回的IP,建立長連接,連接Room service. room Service,長連接網(wǎng)關(guān),hold用戶連接,并將用戶注冊進register service,本身也做一些接入安全策略、白名單、IP限制等。 register service是我們?nèi)謘ession存儲組件,存儲和索引用戶的相關(guān)信息,以供獲取和查詢。 coordinator service用來轉(zhuǎn)發(fā)用戶的上行數(shù)據(jù),包括接入方訂閱的用戶狀態(tài)信息的回調(diào),另外做需要協(xié)調(diào)各個組件的異步操作,比如kick用戶操作,需要從register拿出其他用戶做異步操作. saver service是存儲訪問層,承擔了對redis和mysql的操作,另外也提供部分業(yè)務(wù)邏輯相關(guān)的內(nèi)存緩存,比如廣播信息的加載可以在saver中進行緩存。另外一些策略,比如客戶端sdk由于被惡意或者意外修改,每次加載了消息,不回復ack,那服務(wù)端就不會刪除消息,消息就會被反復加載,形成死循環(huán),可以通過在saver中做策略和判斷。(客戶端總是不可信的)。 center service提供給接入方的內(nèi)部api服務(wù)器,比如單播或者廣播接口,狀態(tài)查詢接口等一系列api,包括運維和管理的api。 舉兩個常見例子,了解工作機制:比如發(fā)一條單播給一個用戶,center先請求Register獲取這個用戶之前注冊的連接通道標識、room實例地址,通過room service下發(fā)給長連接 Center Service比較重的工作如全網(wǎng)廣播,需要把所有的任務(wù)分解成一系列的子任務(wù),分發(fā)給所有center,然后在所有的子任務(wù)里,分別獲取在線和離線的所有用戶,再批量推到Room Service。通常整個集群在那一瞬間壓力很大。 deployd/agent service用于部署管理各個進程,收集各組件的狀態(tài)和信息,zookeeper和keeper用于整個系統(tǒng)的配置文件管理和簡單調(diào)度 關(guān)于推送的服務(wù)端架構(gòu) 常見的推送模型有長輪訓拉取,服務(wù)端直接推送(360消息系統(tǒng)目前主要是這種),推拉結(jié)合(推送只發(fā)通知,推送后根據(jù)通知去拉取消息). 拉取的方式不說了,現(xiàn)在并不常用了,早期很多是nginx+lua+redis,長輪訓,主要問題是開銷比較大,時效性也不好,能做的優(yōu)化策略不多。 直接推送的系統(tǒng),目前就是360消息系統(tǒng)這種,消息類型是消耗型的,并且對于同一個用戶并不允許重復消耗,如果需要多終端重復消耗,需要抽象成不同用戶。 推的好處是實時性好,開銷小,直接將消息下發(fā)給客戶端,不需要客戶端走從接入層到存儲層主動拉取. 但純推送模型,有個很大問題,由于系統(tǒng)是異步的,他的時序性無法精確保證。這對于push需求來說是夠用的,但如果復用推送系統(tǒng)做im類型通信,可能并不合適。 對于嚴格要求時序性,消息可以重復消耗的系統(tǒng),目前也都是走推拉結(jié)合的模型,就是只使用我們的推送系統(tǒng)發(fā)通知,并附帶id等給客戶端做拉取的判斷策略,客戶端根據(jù)推送的key,主動從業(yè)務(wù)服務(wù)器拉取消息。并且當主從同步延遲的時候,跟進推送的key做延遲拉取策略。同時也可以通過消息本身的QoS,做純粹的推送策略,比如一些“正在打字的”低優(yōu)先級消息,不需要主動拉取了,通過推送直接消耗掉。 哪些因素決定推送系統(tǒng)的效果? 首先是sdk的完善程度,sdk策略和細節(jié)完善度,往往決定了弱網(wǎng)絡(luò)環(huán)境下最終推送質(zhì)量. SDK選路策略,最基本的一些策略如下:有些開源服務(wù)可能會針對用戶hash一個該接入?yún)^(qū)域的固定ip,實際上在國內(nèi)環(huán)境下不可行,最好分配器(dispatcher)是返回散列的一組,而且端口也要參開,必要時候,客戶端告知是retry多組都連不上,返回不同idc的服務(wù)器。因為我們會經(jīng)常檢測到一些case,同一地區(qū)的不同用戶,可能對同一idc內(nèi)的不同ip連通性都不一樣,也出現(xiàn)過同一ip不同端口連通性不同,所以用戶的選路策略一定要靈活,策略要足夠完善.另外在選路過程中,客戶端要對不同網(wǎng)絡(luò)情況下的長連接ip做緩存,當網(wǎng)絡(luò)環(huán)境切換時候(wifi、2G、3G),重新請求分配器,緩存不同網(wǎng)絡(luò)環(huán)境的長連接ip。 客戶端對于數(shù)據(jù)心跳和讀寫超時設(shè)置,完善斷線檢測重連機制 針對不同網(wǎng)絡(luò)環(huán)境,或者客戶端本身消息的活躍程度,心跳要自適應(yīng)的進行調(diào)整并與服務(wù)端協(xié)商,來保證鏈路的連通性。并且在弱網(wǎng)絡(luò)環(huán)境下,除了網(wǎng)絡(luò)切換(wifi切3G)或者讀寫出錯情況,什么時候重新建立鏈路也是一個問題??蛻舳税l(fā)出的ping包,不同網(wǎng)絡(luò)下,多久沒有得到響應(yīng),認為網(wǎng)絡(luò)出現(xiàn)問題,重新建立鏈路需要有個權(quán)衡。另外對于不同網(wǎng)絡(luò)環(huán)境下,讀取不同的消息長度,也要有不同的容忍時間,不能一刀切。好的心跳和讀寫超時設(shè)置,可以讓客戶端最快的檢測到網(wǎng)絡(luò)問題,重新建立鏈路,同時在網(wǎng)絡(luò)抖動情況下也能完成大數(shù)據(jù)傳輸。 結(jié)合服務(wù)端做策略 另外系統(tǒng)可能結(jié)合服務(wù)端做一些特殊的策略,比如我們在選路時候,我們會將同一個用戶盡量映射到同一個room service實例上。斷線時,客戶端盡量對上次連接成功的地址進行重試。主要是方便服務(wù)端做閃斷情況下策略,會暫存用戶閃斷時實例上的信息,重新連入的 時候,做單實例內(nèi)的遷移,減少延時與加載開銷. 客戶端?;畈呗?很多創(chuàng)業(yè)公司愿意重新搭建一套push系統(tǒng),確實不難實現(xiàn),其實在協(xié)議完備情況下(最簡單就是客戶端不回ack不清數(shù)據(jù)),服務(wù)端會保證消息是不丟的。但問題是為什么在消息有效期內(nèi),到達率上不去?往往因為自己app的push service存活能力不高。選用云平臺或者大廠的,往往sdk會做一些?;畈呗?,比如和其他app共生,互相喚醒,這也是云平臺的push service更有保障原因。我相信很多云平臺旗下的sdk,多個使用同樣sdk的app,為了實現(xiàn)服務(wù)存活,是可以互相喚醒和保證活躍的。另外現(xiàn)在push sdk本身是單連接,多app復用的,這為sdk實現(xiàn),增加了新的挑戰(zhàn)。 綜上,對我來說,選擇推送平臺,優(yōu)先會考慮客戶端sdk的完善程度。對于服務(wù)端,選擇條件稍微簡單,要求部署接入點(IDC)越要多,配合精細的選路策略,效果越有保證,至于想知道哪些云服務(wù)有多少點,這個群里來自各地的小伙伴們,可以合伙測測。 go語言開發(fā)問題與解決方案 下面講下,go開發(fā)過程中遇到挑戰(zhàn)和優(yōu)化策略,給大家看下當年的一張圖,在第一版優(yōu)化方案上線前一天截圖~可以看到,內(nèi)存最高占用69G,GC時間單實例最高時候高達3~6s.這種情況下,試想一次悲劇的請求,經(jīng)過了幾個正在執(zhí)行g(shù)c的組件,后果必然是超時... gc照成的接入方重試,又加重了系統(tǒng)的負擔。遇到這種情況當時整個系統(tǒng)最差情況每隔2,3天就需要重啟一次~ 當時出現(xiàn)問題,現(xiàn)在總結(jié)起來,大概以下幾點 1.散落在協(xié)程里的I/O,Buffer和對象不復用。 當時(12年)由于對go的gc效率理解有限,比較奔放,程序里大量short live的協(xié)程,對內(nèi)通信的很多io操作,由于不想阻塞主循環(huán)邏輯或者需要及時響應(yīng)的邏輯,通過單獨go協(xié)程來實現(xiàn)異步。這回會gc帶來很多負擔。 針對這個問題,應(yīng)盡量控制協(xié)程創(chuàng)建,對于長連接這種應(yīng)用,本身已經(jīng)有幾百萬并發(fā)協(xié)程情況下,很多情況沒必要在各個并發(fā)協(xié)程內(nèi)部做異步io,因為程序的并行度是有限,理論上做協(xié)程內(nèi)做阻塞操作是沒問題。 如果有些需要異步執(zhí)行,比如如果不異步執(zhí)行,影響對用戶心跳或者等待response無法響應(yīng),最好通過一個任務(wù)池,和一組常駐協(xié)程,來消耗,處理結(jié)果,通過channel再傳回調(diào)用方。使用任務(wù)池還有額外的好處,可以對請求進行打包處理,提高吞吐量,并且可以加入控量策略. 2.網(wǎng)絡(luò)環(huán)境不好引起激增 go協(xié)程相比較以往高并發(fā)程序,如果做不好流控,會引起協(xié)程數(shù)量激增。早期的時候也會發(fā)現(xiàn),時不時有部分主機內(nèi)存會遠遠大于其他服務(wù)器,但發(fā)現(xiàn)時候,所有主要profiling參數(shù)都正常了。 后來發(fā)現(xiàn),通信較多系統(tǒng)中,網(wǎng)絡(luò)抖動阻塞是不可免的(即使是內(nèi)網(wǎng)),對外不停accept接受新請求,但執(zhí)行過程中,由于對內(nèi)通信阻塞,大量協(xié)程被 創(chuàng)建,業(yè)務(wù)協(xié)程等待通信結(jié)果沒有釋放,往往瞬時會迎來協(xié)程暴漲。但這些內(nèi)存在系統(tǒng)穩(wěn)定后,virt和res都并沒能徹底釋放,下降后,維持高位。 處理這種情況,需要增加一些流控策略,流控策略可以選擇在rpc庫來做,或者上面說的任務(wù)池來做,其實我感覺放在任務(wù)池里做更合理些,畢竟rpc通信庫可以做讀寫數(shù)據(jù)的限流,但它并不清楚具體的限流策略,到底是重試還是日志還是緩存到指定隊列。任務(wù)池本身就是業(yè)務(wù)邏輯相關(guān)的,它清楚針對不同的接口需要的流控限制策略。 3.低效和開銷大的rpc框架 早期rpc通信框架比較簡單,對內(nèi)通信時候使用的也是短連接。這本來短連接開銷和性能瓶頸超出我們預(yù)期,短連接io效率是低一些,但端口資源夠,本身吞吐可以滿足需要,用是沒問題的,很多分層的系統(tǒng),也有http短連接對內(nèi)進行請求的 但早期go版本,這樣寫程序,在一定量級情況,是支撐不住的。短連接大量臨時對象和臨時buffer創(chuàng)建,在本已經(jīng)百萬協(xié)程的程序中,是無法承受的。所以后續(xù)我們對我們的rpc框架作了兩次調(diào)整。 第二版的rpc框架,使用了連接池,通過長連接對內(nèi)進行通信(復用的資源包括client和server的:編解碼Buffer、Request/response),大大改善了性能。 但這種在一次request和response還是占用連接的,如果網(wǎng)絡(luò)狀況ok情況下,這不是問題,足夠滿足需要了,但試想一個room實例要與后面的數(shù)百個的register,coordinator,saver,center,keeper實例進行通信,需要建立大量的常駐連接,每個目標機幾十個連接,也有數(shù)千個連接被占用。 非持續(xù)抖動時候(持續(xù)逗開多少無解),或者有延遲較高的請求時候,如果針對目標ip連接開少了,會有瞬時大量請求阻塞,連接無法得到充分利用。第三版增加了Pipeline操作,Pipeline會帶來一些額外的開銷,利用tcp的全雙特性,以盡量少的連接完成對各個服務(wù)集群的rpc調(diào)用。 4.Gc時間過長 Go的Gc仍舊在持續(xù)改善中,大量對象和buffer創(chuàng)建,仍舊會給gc帶來很大負擔,尤其一個占用了25G左右的程序。之前go team的大咖郵件也告知我們,未來會讓使用協(xié)程的成本更低,理論上不需要在應(yīng)用層做更多的策略來緩解gc. 改善方式,一種是多實例的拆分,如果公司沒有端口限制,可以很快部署大量實例,減少gc時長,最直接方法。不過對于360來說,外網(wǎng)通常只能使用80和433。因此常規(guī)上只能開啟兩個實例。當然很多人給我建議能否使用SO_REUSEPORT,不過我們內(nèi)核版本確實比較低,并沒有實踐過。 另外能否模仿nginx,fork多個進程監(jiān)控同樣端口,至少我們目前沒有這樣做,主要對于我們目前進程管理上,還是獨立的運行的,對外監(jiān)聽不同端口程序,還有配套的內(nèi)部通信和管理端口,實例管理和升級上要做調(diào)整。 解決gc的另兩個手段,是內(nèi)存池和對象池,不過最好做仔細評估和測試,內(nèi)存池、對象池使用,也需要對于代碼可讀性與整體效率進行權(quán)衡。 這種程序一定情況下會降低并行度,因為用池內(nèi)資源一定要加互斥鎖或者原子操作做CAS,通常原子操作實測要更快一些。CAS可以理解為可操作的更細行為粒度的鎖(可以做更多CAS策略,放棄運行,防止忙等)。這種方式帶來的問題是,程序的可讀性會越來越像C語言,每次要malloc,各地方用完后要free,對于對象池free之前要reset,我曾經(jīng)在應(yīng)用層嘗試做了一個分層次結(jié)構(gòu)的“無鎖隊列”上圖左邊的數(shù)組實際上是一個列表,這個列表按大小將內(nèi)存分塊,然后使用atomic操作進行CAS。但實際要看測試數(shù)據(jù)了,池技術(shù)可以明顯減少臨時對象和內(nèi)存的申請和釋放,gc時間會減少,但加鎖帶來的并行度的降低,是否能給一段時間內(nèi)的整體吞吐量帶來提升,要做測試和權(quán)衡… 在我們消息系統(tǒng),實際上后續(xù)去除了部分這種黑科技,試想在百萬個協(xié)程里面做自旋操作申請復用的buffer和對象,開銷會很大,尤其在協(xié)程對線程多對多模型情況下,更依賴于golang本身調(diào)度策略,除非我對池增加更多的策略處理,減少忙等,感覺是在把runtime做的事情,在應(yīng)用層非常不優(yōu)雅的實現(xiàn)。普遍使用開銷理論就大于收益。 但對于rpc庫或者codec庫,任務(wù)池內(nèi)部,這些開定量協(xié)程,集中處理數(shù)據(jù)的區(qū)域,可以嘗試改造~ 對于有些固定對象復用,比如固定的心跳包什么的,可以考慮使用全局一些對象,進行復用,針對應(yīng)用層數(shù)據(jù),具體設(shè)計對象池,在部分環(huán)節(jié)去復用,可能比這種無差別的設(shè)計一個通用池更能進行效果評估. 消息系統(tǒng)的運維及測試 下面介紹消息系統(tǒng)的架構(gòu)迭代和一些迭代經(jīng)驗,由于之前在其他地方有過分享,后面的會給出相關(guān)鏈接,下面實際做個簡單介紹,感興趣可以去鏈接里面看 架構(gòu)迭代~根據(jù)業(yè)務(wù)和集群的拆分,能解決部分灰度部署上線測試,減少點對點通信和廣播通信不同產(chǎn)品的相互影響,針對特定的功能做獨立的優(yōu)化. 消息系統(tǒng)架構(gòu)和集群拆分,最基本的是拆分多實例,其次是按照業(yè)務(wù)類型對資源占用情況分類,按用戶接入網(wǎng)絡(luò)和對idc布點要求分類(目前沒有條件,所有的產(chǎn)品都部署到全部idc)系統(tǒng)的測試go語言在并發(fā)測試上有獨特優(yōu)勢。對于壓力測試,目前主要針對指定的服務(wù)器,選定線上空閑的服務(wù)器做長連接壓測。然后結(jié)合可視化,分析壓測過程中的系統(tǒng)狀態(tài)。但壓測早期用的比較多,但實現(xiàn)的統(tǒng)計報表功能和我理想有一定差距。我覺得最近出的golang開源產(chǎn)品都符合這種場景,go寫網(wǎng)絡(luò)并發(fā)程序給大家?guī)淼谋憷尨蠹野岩酝鶠榱私档蛷碗s度,拆解或者分層協(xié)作的組件,又組合在了一起。 QA Q1:協(xié)議棧大小,超時時間定制原則? 移動網(wǎng)絡(luò)下超時時間按產(chǎn)品需求通常2g,3G情況下是5分鐘,wifi情況下5~8分鐘。但對于個別場景,要求響應(yīng)非常迅速的場景,如果連接idle超過1分鐘,都會有ping,pong,來校驗是否斷線檢測,盡快做到重新連接。 Q2:消息是否持久化? 消息持久化,通常是先存后發(fā),存儲用的redis,但落地用的mysql。mysql只做故障恢復使用。 Q3:消息風暴怎么解決的? 如果是發(fā)送情況下,普通產(chǎn)品是不需要限速的,對于較大產(chǎn)品是有發(fā)送隊列做控速度,按人數(shù),按秒進行控速度發(fā)放,發(fā)送成功再發(fā)送下一條。 Q4:golang的工具鏈支持怎么樣?我自己寫過一些小程序千把行之內(nèi),確實很不錯,但不知道代碼量上去之后,配套的debug工具和profiling工具如何,我看上邊有分享說golang自帶的profiling工具還不錯,那debug呢怎么樣呢,官方一直沒有出debug工具,gdb支持也不完善,不知你們用的什么? 是這樣的,我們正常就是println,我感覺基本上可以定位我所有問題,但也不排除由于并行性通過println無法復現(xiàn)的問題,目前來看只能靠經(jīng)驗了。只要常見并發(fā)嘗試,經(jīng)過分析是可以找到的。go很快會推出調(diào)試工具的~ Q5:協(xié)議棧是基于tcp嗎? 是否有協(xié)議拓展功能?協(xié)議棧是tcp,整個系統(tǒng)tcp長連接,沒有考慮擴展其功能~如果有好的經(jīng)驗,可以分享~ Q6:問個問題,這個系統(tǒng)是接收上行數(shù)據(jù)的吧,系統(tǒng)接收上行數(shù)據(jù)后是轉(zhuǎn)發(fā)給相應(yīng)系統(tǒng)做處理么,是怎么轉(zhuǎn)發(fā)呢,如果需要給客戶端返回調(diào)用結(jié)果又是怎么處理呢? 系統(tǒng)上行數(shù)據(jù)是根據(jù)協(xié)議頭進行轉(zhuǎn)發(fā),協(xié)議頭里面標記了產(chǎn)品和轉(zhuǎn)發(fā)類型,在coordinator里面跟進產(chǎn)品和轉(zhuǎn)發(fā)類型,回調(diào)用戶,如果用戶需要阻塞等待回復才能后續(xù)操作,那通過再發(fā)送消息,路由回用戶。因為整個系統(tǒng)是全異步的。 Q7:問個pushsdk的問題。pushsdk的單連接,多app復用方式,這樣的情況下以下幾個問題是如何解決的:1)系統(tǒng)流量統(tǒng)計會把所有流量都算到啟動連接的應(yīng)用吧?而啟動應(yīng)用的連接是不固定的吧?2)同一個pushsdk在不同的應(yīng)用中的版本號可能不一樣,這樣暴露出來的接口可能有版本問題,如果用單連接模式怎么解決? 流量只能算在啟動的app上了,但一般這種安裝率很高的app承擔可能性大,常用app本身被檢測和殺死可能性較少,另外消息下發(fā)量是有嚴格控制 的。整體上用戶還是省電和省流量的。我們pushsdk盡量向上兼容,出于這個目的,push sdk本身做的工作非常有限,抽象出來一些常見的功能,純推的系統(tǒng),客戶端策略目前做的很少,也有這個原因。 Q8:生產(chǎn)系統(tǒng)的profiling是一直打開的么? 不是一直打開,每個集群都有采樣,但需要開啟哪個可以后臺控制。這個profling是通過接口調(diào)用。 Q9:面前系統(tǒng)中的消息消費者可不可以分組?類似于Kafka。 客戶端可以訂閱不同產(chǎn)品的消息,接受不同的分組。接入的時候進行bind或者unbind操作 Q10:為什么放棄erlang,而選擇go,有什么特別原因嗎?我們現(xiàn)在用的erlang? erlang沒有問題,原因是我們上線后,其他團隊才做出來,經(jīng)過qa一個部門對比測試,在沒有顯著性能提升下,選擇繼續(xù)使用go版本的push,作為公司基礎(chǔ)服務(wù)。 Q11:流控問題有排查過網(wǎng)卡配置導致的idle問題嗎? 流控是業(yè)務(wù)級別的流控,我們上線前對于內(nèi)網(wǎng)的極限通信量做了測試,后續(xù)將請求在rpc庫內(nèi),控制在小于內(nèi)部通信開銷的上限以下.在到達上限前作流控。 Q12:服務(wù)的協(xié)調(diào)調(diào)度為什么選擇zk有考慮過raft實現(xiàn)嗎?golang的raft實現(xiàn)很多啊,比如Consul和ectd之類的。 3年前,還沒有后兩者或者后兩者沒聽過應(yīng)該。zk當時公司內(nèi)部成熟方案,不過目前來看,我們不準備用zk作結(jié)合系統(tǒng)的定制開發(fā),準備用自己寫的keeper代替zk,完成配置文件自動轉(zhuǎn)數(shù)據(jù)結(jié)構(gòu),數(shù)據(jù)結(jié)構(gòu)自動同步指定進程,同時里面可以完成很多自定義的發(fā)現(xiàn)和控制策略,客戶端包含keeper的sdk就可以實現(xiàn)以上的所有監(jiān)控數(shù)據(jù),profling數(shù)據(jù)收集,配置文件更新,啟動關(guān)閉等回調(diào)。完全抽象成語keeper通信sdk,keeper之間考慮用raft。 Q13:負載策略是否同時在服務(wù)側(cè)與CLIENT側(cè)同時做的 (DISPATCHER 會返回一組IP)?另外,ROOM SERVER/REGISTER SERVER連接狀態(tài)的一致性可用性如何保證? 服務(wù)側(cè)?;钣袩o特別關(guān)注的地方? 安全性方面是基于TLS再加上應(yīng)用層加密? 會在server端做,比如重啟操作前,會下發(fā)指令類型消息,讓客戶端進行主動行為。部分消息使用了加密策略,自定義的rsa+des,另外滿足我們安全公司的需要,也定制開發(fā)很多安全加密策略。一致性是通過冷備解決的,早期考慮雙寫,但實時狀態(tài)雙寫同步代價太高而且容易有臟數(shù)據(jù),比如register掛了,調(diào)用所有room,通過重新刷入指定register來解決。 Q14:這個keeper有開源打算嗎? 還在寫,如果沒耦合我們系統(tǒng)太多功能,一定會開源的,主要這意味著,我們所有的bind在sdk的庫也需要開源~ Q15:比較好奇lisence是哪個如果開源?
1、學習曲線
它包含了類C語法、GC內(nèi)置和工程工具。這一點非常重要,因為Go語言容易學習,所以一個普通的大學生花一個星期就能寫出來可以上手的、高性能的應(yīng)用。在國內(nèi)大家都追求快,這也是為什么國內(nèi)Go流行的原因之一。
2、效率
Go擁有接近C的運行效率和接近PHP的開發(fā)效率,這就很有利的支撐了上面大家追求快速的需求。
3、出身名門、血統(tǒng)純正
之所以說Go語言出身名門,是因為我們知道Go語言出自Google公司,這個公司在業(yè)界的知名度和實力自然不用多說。Google公司聚集了一批牛人,在各種編程語言稱雄爭霸的局面下推出新的編程語言,自然有它的戰(zhàn)略考慮。而且從Go語言的發(fā)展態(tài)勢來看,Google對它這個新的寵兒還是很看重的,Go自然有一個良好的發(fā)展前途。我們看看Go語言的主要創(chuàng)造者,血統(tǒng)純正這點就可見端倪了。
4、組合的思想、無侵入式的接口
Go語言可以說是開發(fā)效率和運行效率二者的完美融合,天生的并發(fā)編程支持。Go語言支持當前所有的編程范式,包括過程式編程、面向?qū)ο缶幊桃约昂瘮?shù)式編程。
5、強大的標準庫
這包括互聯(lián)網(wǎng)應(yīng)用、系統(tǒng)編程和網(wǎng)絡(luò)編程。Go里面的標準庫基本上已經(jīng)是非常穩(wěn)定,特別是我這里提到的三個,網(wǎng)絡(luò)層、系統(tǒng)層的庫非常實用。
6、部署方便
我相信這一點是很多人選擇Go的最大理由,因為部署太方便,所以現(xiàn)在也有很多人用Go開發(fā)運維程序。
7、簡單的并發(fā)
它包含降低心智的并發(fā)和簡易的數(shù)據(jù)同步,我覺得這是Go最大的特色。之所以寫正確的并發(fā)、容錯和可擴展的程序如此之難,是因為我們用了錯誤的工具和錯誤的抽象,Go可以說這一塊做的相當簡單。
8、穩(wěn)定性
Go擁有強大的編譯檢查、嚴格的編碼規(guī)范和完整的軟件生命周期工具,具有很強的穩(wěn)定性,穩(wěn)定壓倒一切。那么為什么Go相比于其他程序會更穩(wěn)定呢?這是因為Go提供了軟件生命周期的各個環(huán)節(jié)的工具,如go
tool、gofmt、go test。