1:二分法
成都服務(wù)器托管,創(chuàng)新互聯(lián)建站提供包括服務(wù)器租用、綿陽服務(wù)器托管、帶寬租用、云主機(jī)、機(jī)柜租用、主機(jī)租用托管、CDN網(wǎng)站加速、主機(jī)域名等業(yè)務(wù)的一體化完整服務(wù)。電話咨詢:18982081108
求根號(hào)5
a:折半:?????? 5/2=2.5
b:平方校驗(yàn):? 2.5*2.5=6.255,并且得到當(dāng)前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校驗(yàn):1.25*1.25=1.56255,得到當(dāng)前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校驗(yàn):1.875*1.875=3.5156255,得到當(dāng)前下限1.875
每次得到當(dāng)前值和5進(jìn)行比較,并且記下下下限和上限,依次迭代,逐漸逼近平方根:
代碼如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛頓迭代
仔細(xì)思考一下就能發(fā)現(xiàn),我們需要解決的問題可以簡單化理解。
從函數(shù)意義上理解:我們是要求函數(shù)f(x) = x2,使f(x) = num的近似解,即x2 - num = 0的近似解。
從幾何意義上理解:我們是要求拋物線g(x) = x2 - num與x軸交點(diǎn)(g(x) = 0)最接近的點(diǎn)。
我們假設(shè)g(x0)=0,即x0是正解,那么我們要做的就是讓近似解x不斷逼近x0,這是函數(shù)導(dǎo)數(shù)的定義:
從幾何圖形上看,因?yàn)閷?dǎo)數(shù)是切線,通過不斷迭代,導(dǎo)數(shù)與x軸的交點(diǎn)會(huì)不斷逼近x0。
import math
def erfenfa(function, a, b): #定義函數(shù),利用二分法求方程的根,function為具體方程,a,b為根的取值范圍
start = a
end = b
if function(a) == 0:?
return a
elif function(b) == 0:
return b
elif function(a) * function(b) 0:?
print("couldn't find root in [a,b]")
return
else:
mid = (start + end) / 2
while abs(start - mid) 0.0000001:?
if function(mid) == 0:
return mid
elif function(mid) * function(start) 0:
end = mid
else:
start = mid
mid = (start + end) / 2
return mid
def f(x):#定義構(gòu)造方程式函數(shù)
return math.pow(x, 5) -15*math.pow(x, 4) +85*math.pow(x, 3)-225*pow(x,2)+274*x - 121
print(round(erfenfa(f, 1.5, 2.4),6))
import numpy as np
def solve_quad(a,b,c):
if a == 0:
print('您輸入的不是二次方程!')
else:
delta = b*b-4*a*c
x = -b/(2*a)
if delta == 0:
print('方程有惟一解,X=%f'%(x))
return x
elif delta 0:
x1 = x-np.sqrt(delta)/(2*a)
x2 = x+np.sqrt(delta)/(2*a)
print('方程有兩個(gè)實(shí)根:X1=%f,X2=%f'%(x1,x2))
return x1,x2
else:
x1 = (-b+complex(0,1)*np.sqrt((-1)*delta))/(2*a)
x2 = (-b-complex(0,1)*np.sqrt((-1)*delta))/(2*a)
print(x1,x2)
return x1,x2
Python
是完全面向?qū)ο蟮恼Z言。函數(shù)、模塊、數(shù)字、字符串都是對(duì)象。并且完全支持繼承、重載、派生、多繼承,有益于增強(qiáng)源代碼的復(fù)用性。Python支持重載運(yùn)算符和動(dòng)態(tài)類型。相對(duì)于Lisp這種傳統(tǒng)的函數(shù)式編程語言,Python對(duì)函數(shù)式設(shè)計(jì)只提供了有限的支持。有兩個(gè)標(biāo)準(zhǔn)庫(functools, itertools)提供了Haskell和Standard ML中久經(jīng)考驗(yàn)的函數(shù)式程序設(shè)計(jì)工具。
使用math中的sqrt函數(shù)
1、示例代碼
import math
amk = math.sqrt(100)
print(amk)
2、示例結(jié)果
10.0