使用TensorFlow怎么實現(xiàn)模型評估?針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。
成都創(chuàng)新互聯(lián)主要業(yè)務有網(wǎng)站營銷策劃、網(wǎng)站建設、做網(wǎng)站、微信公眾號開發(fā)、小程序設計、成都h5網(wǎng)站建設、程序開發(fā)等業(yè)務。一次合作終身朋友,是我們奉行的宗旨;我們不僅僅把客戶當客戶,還把客戶視為我們的合作伙伴,在開展業(yè)務的過程中,公司還積累了豐富的行業(yè)經(jīng)驗、全網(wǎng)整合營銷推廣資源和合作伙伴關系資源,并逐漸建立起規(guī)范的客戶服務和保障體系。模型評估是非常重要的,隨后的每個模型都有模型評估方式。使用TensorFlow時,需要把模型評估加入到計算圖中,然后在模型訓練完后調(diào)用模型評估。
在訓練模型過程中,模型評估能洞察模型算法,給出提示信息來調(diào)試、提高或者改變整個模型。但是在模型訓練中并不是總需要模型評估,我們將展示如何在回歸算法和分類算法中使用它。
訓練模型之后,需要定量評估模型的性能如何。在理想情況下,評估模型需要一個訓練數(shù)據(jù)集和測試數(shù)據(jù)集,有時甚至需要一個驗證數(shù)據(jù)集。
想評估一個模型時就得使用大批量數(shù)據(jù)點。如果完成批量訓練,我們可以重用模型來預測批量數(shù)據(jù)點。但是如果要完成隨機訓練,就不得不創(chuàng)建單獨的評估器來處理批量數(shù)據(jù)點。
分類算法模型基于數(shù)值型輸入預測分類值,實際目標是1和0的序列。我們需要度量預測值與真實值之間的距離。分類算法模型的損失函數(shù)一般不容易解釋模型好壞,所以通常情況是看下準確預測分類的結果的百分比。
不管算法模型預測的如何,我們都需要測試算法模型,這點相當重要。在訓練數(shù)據(jù)和測試數(shù)據(jù)上都進行模型評估,以搞清楚模型是否過擬合。
# TensorFlowm模型評估 # # This code will implement two models. The first # is a simple regression model, we will show how to # call the loss function, MSE during training, and # output it after for test and training sets. # # The second model will be a simple classification # model. We will also show how to print percent # classified correctly during training and after # for both the test and training sets. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # 創(chuàng)建計算圖 sess = tf.Session() # 回歸例子: # We will create sample data as follows: # x-data: 100 random samples from a normal ~ N(1, 0.1) # target: 100 values of the value 10. # We will fit the model: # x-data * A = target # 理論上, A = 10. # 聲明批量大小 batch_size = 25 # 創(chuàng)建數(shù)據(jù)集 x_vals = np.random.normal(1, 0.1, 100) y_vals = np.repeat(10., 100) x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # 八二分訓練/測試數(shù)據(jù) train/test = 80%/20% train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # 創(chuàng)建變量 (one model parameter = A) A = tf.Variable(tf.random_normal(shape=[1,1])) # 增加操作到計算圖 my_output = tf.matmul(x_data, A) # 增加L2損失函數(shù)到計算圖 loss = tf.reduce_mean(tf.square(my_output - y_target)) # 創(chuàng)建優(yōu)化器 my_opt = tf.train.GradientDescentOptimizer(0.02) train_step = my_opt.minimize(loss) # 初始化變量 init = tf.global_variables_initializer() sess.run(init) # 迭代運行 # 如果在損失函數(shù)中使用的模型輸出結果經(jīng)過轉換操作,例如,sigmoid_cross_entropy_with_logits()函數(shù), # 為了精確計算預測結果,別忘了在模型評估中也要進行轉換操作。 for i in range(100): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%25==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) print('Loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}))) # 評估準確率(loss) mse_test = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])}) mse_train = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])}) print('MSE on test:' + str(np.round(mse_test, 2))) print('MSE on train:' + str(np.round(mse_train, 2))) # 分類算法案例 # We will create sample data as follows: # x-data: sample 50 random values from a normal = N(-1, 1) # + sample 50 random values from a normal = N(1, 1) # target: 50 values of 0 + 50 values of 1. # These are essentially 100 values of the corresponding output index # We will fit the binary classification model: # If sigmoid(x+A) < 0.5 -> 0 else 1 # Theoretically, A should be -(mean1 + mean2)/2 # 重置計算圖 ops.reset_default_graph() # 加載計算圖 sess = tf.Session() # 聲明批量大小 batch_size = 25 # 創(chuàng)建數(shù)據(jù)集 x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(2, 1, 50))) y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50))) x_data = tf.placeholder(shape=[1, None], dtype=tf.float32) y_target = tf.placeholder(shape=[1, None], dtype=tf.float32) # 分割數(shù)據(jù)集 train/test = 80%/20% train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # 創(chuàng)建變量 (one model parameter = A) A = tf.Variable(tf.random_normal(mean=10, shape=[1])) # Add operation to graph # Want to create the operstion sigmoid(x + A) # Note, the sigmoid() part is in the loss function my_output = tf.add(x_data, A) # 增加分類損失函數(shù) (cross entropy) xentropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)) # Create Optimizer my_opt = tf.train.GradientDescentOptimizer(0.05) train_step = my_opt.minimize(xentropy) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # 運行迭代 for i in range(1800): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = [x_vals_train[rand_index]] rand_y = [y_vals_train[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%200==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) print('Loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y}))) # 評估預測 # 用squeeze()函數(shù)封裝預測操作,使得預測值和目標值有相同的維度。 y_prediction = tf.squeeze(tf.round(tf.nn.sigmoid(tf.add(x_data, A)))) # 用equal()函數(shù)檢測是否相等, # 把得到的true或false的boolean型張量轉化成float32型, # 再對其取平均值,得到一個準確度值。 correct_prediction = tf.equal(y_prediction, y_target) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) acc_value_test = sess.run(accuracy, feed_dict={x_data: [x_vals_test], y_target: [y_vals_test]}) acc_value_train = sess.run(accuracy, feed_dict={x_data: [x_vals_train], y_target: [y_vals_train]}) print('Accuracy on train set: ' + str(acc_value_train)) print('Accuracy on test set: ' + str(acc_value_test)) # 繪制分類結果 A_result = -sess.run(A) bins = np.linspace(-5, 5, 50) plt.hist(x_vals[0:50], bins, alpha=0.5, label='N(-1,1)', color='white') plt.hist(x_vals[50:100], bins[0:50], alpha=0.5, label='N(2,1)', color='red') plt.plot((A_result, A_result), (0, 8), 'k--', linewidth=3, label='A = '+ str(np.round(A_result, 2))) plt.legend(loc='upper right') plt.title('Binary Classifier, Accuracy=' + str(np.round(acc_value_test, 2))) plt.show()
輸出:
Step #25 A = [[ 5.79096079]] Loss = 16.8725 Step #50 A = [[ 8.36085415]] Loss = 3.60671 Step #75 A = [[ 9.26366138]] Loss = 1.05438 Step #100 A = [[ 9.58914948]] Loss = 1.39841 MSE on test:1.04 MSE on train:1.13 Step #200 A = [ 5.83126402] Loss = 1.9799 Step #400 A = [ 1.64923656] Loss = 0.678205 Step #600 A = [ 0.12520729] Loss = 0.218827 Step #800 A = [-0.21780498] Loss = 0.223919 Step #1000 A = [-0.31613481] Loss = 0.234474 Step #1200 A = [-0.33259964] Loss = 0.237227 Step #1400 A = [-0.28847221] Loss = 0.345202 Step #1600 A = [-0.30949864] Loss = 0.312794 Step #1800 A = [-0.33211425] Loss = 0.277342 Accuracy on train set: 0.9625 Accuracy on test set: 1.0
關于使用TensorFlow怎么實現(xiàn)模型評估問題的解答就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注創(chuàng)新互聯(lián)成都網(wǎng)站設計公司行業(yè)資訊頻道了解更多相關知識。
另外有需要云服務器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。