今天就跟大家聊聊有關(guān)使用python怎么對驗(yàn)證碼進(jìn)行降噪,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結(jié)了以下內(nèi)容,希望大家根據(jù)這篇文章可以有所收獲。
站在用戶的角度思考問題,與客戶深入溝通,找到勐臘網(wǎng)站設(shè)計(jì)與勐臘網(wǎng)站推廣的解決方案,憑借多年的經(jīng)驗(yàn),讓設(shè)計(jì)與互聯(lián)網(wǎng)技術(shù)結(jié)合,創(chuàng)造個(gè)性化、用戶體驗(yàn)好的作品,建站類型包括:成都網(wǎng)站制作、成都網(wǎng)站設(shè)計(jì)、企業(yè)官網(wǎng)、英文網(wǎng)站、手機(jī)端網(wǎng)站、網(wǎng)站推廣、域名注冊、虛擬空間、企業(yè)郵箱。業(yè)務(wù)覆蓋勐臘地區(qū)。圖像灰度化處理
import cv2 import numpy as np img = cv2.imread('./picture/1.jpg') #將圖片灰度化處理,降維,加權(quán)進(jìn)行灰度化c gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.imshow('min_gray',gray) cv2.waitKey(0) cv2.destroyAllWindows()
效果:
圖像二值化處理
t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY) cv2.imshow('threshold',gray2) cv2.waitKey(0) cv2.destroyAllWindows()
效果:
8領(lǐng)域過濾
def remove_noise(img,k=4): img2 = img.copy() # img處理數(shù)據(jù),k過濾條件 w,h = img2.shape def get_neighbors(img3,r,c): count = 0 for i in [r-1,r,r+1]: for j in [c-1,c,c+1]: if img3[i,j] > 10:#純白色 count+=1 return count # 兩層for循環(huán)判斷所有的點(diǎn) for x in range(w): for y in range(h): if x == 0 or y == 0 or x == w -1 or y == h -1: img2[x,y] = 255 else: n = get_neighbors(img2,x,y)#獲取鄰居數(shù)量,純白色的鄰居 if n > k: img2[x,y] = 255 return img2 result = remove_noise(gray2) cv2.imshow('8neighbors',result) cv2.waitKey(0) cv2.destroyAllWindows()
過濾后的效果:
代碼整合:
import cv2 import numpy as np img = cv2.imread('./picture/1.jpg') #將圖片灰度化處理,降維,加權(quán)進(jìn)行灰度化c gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) t,gray2 = cv2.threshold(gray,200,255,cv2.THRESH_BINARY) cv2.imshow('threshold',gray2) result = remove_noise(gray2) cv2.imshow('8neighbors',result) cv2.waitKey(0) cv2.destroyAllWindows()
看完上述內(nèi)容,你們對使用python怎么對驗(yàn)證碼進(jìn)行降噪有進(jìn)一步的了解嗎?如果還想了解更多知識(shí)或者相關(guān)內(nèi)容,請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝大家的支持。