真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python擬合函數(shù)圖像,python定義畫函數(shù)圖像函數(shù)

Python 怎么用曲線擬合數(shù)據(jù)

Python中利用guiqwt進(jìn)行曲線數(shù)據(jù)擬合。

10多年的南譙網(wǎng)站建設(shè)經(jīng)驗(yàn),針對(duì)設(shè)計(jì)、前端、開發(fā)、售后、文案、推廣等六對(duì)一服務(wù),響應(yīng)快,48小時(shí)及時(shí)工作處理。成都全網(wǎng)營銷的優(yōu)勢(shì)是能夠根據(jù)用戶設(shè)備顯示端的尺寸不同,自動(dòng)調(diào)整南譙建站的顯示方式,使網(wǎng)站能夠適用不同顯示終端,在瀏覽器中調(diào)整網(wǎng)站的寬度,無論在任何一種瀏覽器上瀏覽網(wǎng)站,都能展現(xiàn)優(yōu)雅布局與設(shè)計(jì),從而大程度地提升瀏覽體驗(yàn)。創(chuàng)新互聯(lián)公司從事“南譙網(wǎng)站設(shè)計(jì)”,“南譙網(wǎng)站推廣”以來,每個(gè)客戶項(xiàng)目都認(rèn)真落實(shí)執(zhí)行。

示例程序:

圖形界面如下:

Python 中的函數(shù)擬合

很多業(yè)務(wù)場(chǎng)景中,我們希望通過一個(gè)特定的函數(shù)來擬合業(yè)務(wù)數(shù)據(jù),以此來預(yù)測(cè)未來數(shù)據(jù)的變化趨勢(shì)。(比如用戶的留存變化、付費(fèi)變化等)

本文主要介紹在 Python 中常用的兩種曲線擬合方法:多項(xiàng)式擬合 和 自定義函數(shù)擬合。

通過多項(xiàng)式擬合,我們只需要指定想要擬合的多項(xiàng)式的最高項(xiàng)次是多少即可。

運(yùn)行結(jié)果:

對(duì)于自定義函數(shù)擬合,不僅可以用于直線、二次曲線、三次曲線的擬合,它可以適用于任意形式的曲線的擬合,只要定義好合適的曲線方程即可。

運(yùn)行結(jié)果:

python_numpy最小二乘法的曲線擬合

在了解了最小二乘法的基本原理之后 python_numpy實(shí)用的最小二乘法理解 ,就可以用最小二乘法做曲線擬合了

從結(jié)果中可以看出,直線擬合并不能對(duì)擬合數(shù)據(jù)達(dá)到很好的效果,下面我們介紹一下曲線擬合。

b=[y1]

[y2]

......

[y100]

解得擬合函數(shù)的系數(shù)[a,b,c.....d]

CODE:

根據(jù)結(jié)果可以看到擬合的效果不錯(cuò)。

我們可以通過改變

來調(diào)整擬合效果。

如果此處我們把擬合函數(shù)改為最高次為x^20的多項(xiàng)式

所得結(jié)果如下:

矯正 過擬合 現(xiàn)象

在保持?jǐn)M合函數(shù)改為最高次為x^20的多項(xiàng)式的條件下,增大樣本數(shù):

通過結(jié)果可以看出,過擬合現(xiàn)象得到了改善。

Python最小二乘法擬合與作圖

在函數(shù)擬合中,如果用p表示函數(shù)中需要確定的參數(shù),那么目標(biāo)就是找到一組p,使得下面函數(shù)S的值最?。?/p>

這種算法稱為最小二乘法擬合。Python的Scipy數(shù)值計(jì)算庫中的optimize模塊提供了 leastsq() 函數(shù),可以對(duì)數(shù)據(jù)進(jìn)行最小二乘擬合計(jì)算。

此處利用該函數(shù)對(duì)一段弧線使用圓方程進(jìn)行了擬合,并通過Matplotlib模塊進(jìn)行了作圖,程序內(nèi)容如下:

Python的使用中需要導(dǎo)入相應(yīng)的模塊,此處首先用 import 語句

分別導(dǎo)入了numpy, leastsq與pylab模塊,其中numpy模塊常用用與數(shù)組類型的建立,讀入等過程。leastsq則為最小二乘法擬合函數(shù)。pylab是繪圖模塊。

接下來我們需要讀入需要進(jìn)行擬合的數(shù)據(jù),這里使用了 numpy.loadtxt() 函數(shù):

其參數(shù)有:

進(jìn)行擬合時(shí),首先我們需要定義一個(gè)目標(biāo)函數(shù)。對(duì)于圓的方程,我們需要圓心坐標(biāo)(a,b)以及半徑r三個(gè)參數(shù),方便起見用p來存儲(chǔ):

緊接著就可以進(jìn)行擬合了, leastsq() 函數(shù)需要至少提供擬合的函數(shù)名與參數(shù)的初始值:

返回的結(jié)果為一數(shù)組,分別為擬合得到的參數(shù)與其誤差值等,這里只取擬合參數(shù)值。

leastsq() 的參數(shù)具體有:

輸出選項(xiàng)有:

最后我們可以將原數(shù)據(jù)與擬合結(jié)果一同做成線狀圖,可采用 pylab.plot() 函數(shù):

pylab.plot() 函數(shù)需提供兩列數(shù)組作為輸入,其他參數(shù)可調(diào)控線條顏色,形狀,粗細(xì)以及對(duì)應(yīng)名稱等性質(zhì)。視需求而定,此處不做詳解。

pylab.legend() 函數(shù)可以調(diào)控圖像標(biāo)簽的位置,有無邊框等性質(zhì)。

pylab.annotate() 函數(shù)設(shè)置注釋,需至少提供注釋內(nèi)容與放置位置坐標(biāo)的參數(shù)。

pylab.show() 函數(shù)用于顯示圖像。

最終結(jié)果如下圖所示:

用Python作科學(xué)計(jì)算

numpy.loadtxt

scipy.optimize.leastsq

怎么用Python將圖像邊界用最小二乘法擬合成曲線

本文實(shí)例講述了Python基于最小二乘法實(shí)現(xiàn)曲線擬合。分享給大家供大家參考,具體如下:

這里不手動(dòng)實(shí)現(xiàn)最小二乘,調(diào)用scipy庫中實(shí)現(xiàn)好的相關(guān)優(yōu)化函數(shù)。

考慮如下的含有4個(gè)參數(shù)的函數(shù)式:

構(gòu)造數(shù)據(jù)

?

123456789101112131415

import numpy as npfrom scipy import optimizeimport matplotlib.pyplot as pltdef logistic4(x, A, B, C, D):??return (A-D)/(1+(x/C)**B)+Ddef residuals(p, y, x):??A, B, C, D = p??return y - logisctic4(x, A, B, C, D)def peval(x, p):??A, B, C, D = p??return logistic4(x, A, B, C, D)A, B, C, D = .5, 2.5, 8, 7.3x = np.linspace(0, 20, 20)y_true = logistic4(x, A, B, C, D)y_meas = y_true + 0.2 * np.random.randn(len(y_true))

調(diào)用工具箱函數(shù),進(jìn)行優(yōu)化

?

1234

p0 = [1/2]*4plesq = optimize.leastsq(residuals, p0, args=(y_meas, x))????????????# leastsq函數(shù)的功能其實(shí)是根據(jù)誤差(y_meas-y_true)????????????# 估計(jì)模型(也即函數(shù))的參數(shù)

繪圖

?

12345678

plt.figure(figsize=(6, 4.5))plt.plot(x, peval(x, plesq[0]), x, y_meas, 'o', x, y_true)plt.legend(['Fit', 'Noisy', 'True'], loc='upper left')plt.title('least square for the noisy data (measurements)')for i, (param, true, est) in enumerate(zip('ABCD', [A, B, C, D], plesq[0])):??plt.text(11, 2-i*.5, '{} = {:.2f}, est({:.2f}) = {:.2f}'.format(param, true, param, est))plt.savefig('./logisitic.png')plt.show()

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。


新聞名稱:python擬合函數(shù)圖像,python定義畫函數(shù)圖像函數(shù)
文章路徑:http://weahome.cn/article/dsceegc.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部