1. 鍵值數(shù)據(jù)庫
為桐柏等地區(qū)用戶提供了全套網(wǎng)頁設計制作服務,及桐柏網(wǎng)站建設行業(yè)解決方案。主營業(yè)務為網(wǎng)站建設、做網(wǎng)站、桐柏網(wǎng)站設計,以傳統(tǒng)方式定制建設網(wǎng)站,并提供域名空間備案等一條龍服務,秉承以專業(yè)、用心的態(tài)度為用戶提供真誠的服務。我們深信只要達到每一位用戶的要求,就會得到認可,從而選擇與我們長期合作。這樣,我們也可以走得更遠!
相關產(chǎn)品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached
應用:內(nèi)容緩存
優(yōu)點:擴展性好、靈活性好、大量寫操作時性能高
缺點:無法存儲結構化信息、條件查詢效率較低
使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)
2. 列族數(shù)據(jù)庫
相關產(chǎn)品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS
應用:分布式數(shù)據(jù)存儲與管理
優(yōu)點:查找速度快、可擴展性強、容易進行分布式擴展、復雜性低
使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)
3. 文檔數(shù)據(jù)庫
相關產(chǎn)品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit
應用:存儲、索引并管理面向文檔的數(shù)據(jù)或者類似的半結構化數(shù)據(jù)
優(yōu)點:性能好、靈活性高、復雜性低、數(shù)據(jù)結構靈活
缺點:缺乏統(tǒng)一的查詢語言
使用者:百度云數(shù)據(jù)庫(MongoDB)、SAP(MongoDB)
4. 圖形數(shù)據(jù)庫
圖形數(shù)據(jù)庫-使用圖作為數(shù)據(jù)模型來存儲數(shù)據(jù)。
相關產(chǎn)品:Neo4J、OrientDB、InfoGrid、GraphDB
應用:大量復雜、互連接、低結構化的圖結構場合,如社交網(wǎng)絡、推薦系統(tǒng)等
優(yōu)點:靈活性高、支持復雜的圖形算法、可用于構建復雜的關系圖譜
缺點:復雜性高、只能支持一定的數(shù)據(jù)規(guī)模
使用者:Adobe(Neo4J)、Cisco(Neo4J)、T-Mobile(Neo4J)
關系數(shù)據(jù)庫經(jīng)過幾十年的發(fā)展,已經(jīng)非常成熟,但同時也存在不足:
表結構是強約束的,業(yè)務變更時擴充很麻煩。
如果對大數(shù)據(jù)量的表進行統(tǒng)計運算,I/O會很高,因為即使只針對某列進行運算,也需要將整行數(shù)據(jù)讀入內(nèi)存。
全文搜索只能使用 Like 進行整表掃描,性能非常低。
針對這些不足,產(chǎn)生了不同的 NoSQL 解決方案,在某些場景下比關系數(shù)據(jù)庫更有優(yōu)勢,但同時也犧牲了某些特性,所以不能片面的迷信某種方案,應將其作為 SQL 的有利補充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分為4類:
Redis 是典型,其 value 是具體的數(shù)據(jù)結構,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱為數(shù)據(jù)結構服務器。
以 list 為例:
LPOP key 是移除并返回隊列左邊的第一個元素。
如果用關系數(shù)據(jù)庫就比較麻煩了,需要操作:
Redis 的缺點主要體現(xiàn)在不支持完成的ACID事務,只能保證隔離性和一致性,無法保證原子性和持久性。
最大的特點是 no-schema,無需在使用前定義字段,讀取一個不存在的字段也不會導致語法錯誤。
特點:
以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關系數(shù)據(jù)庫中會有很大的麻煩,而使用文檔數(shù)據(jù)庫則非常方便。
文檔數(shù)據(jù)庫的主要缺點:
關系數(shù)據(jù)庫是按行來存儲的,列式數(shù)據(jù)庫是按照列來存儲數(shù)據(jù)。
按行存儲的優(yōu)勢:
在某些場景下,這些優(yōu)勢就成為劣勢了,例如,計算超重人員的數(shù)據(jù),只需要讀取體重這一列進行統(tǒng)計即可,但行式存儲會將整行數(shù)據(jù)讀取到內(nèi)存中,很浪費。
而列式存儲中,只需要讀取體重這列的數(shù)據(jù)即可,I/O 將大大減少。
除了節(jié)省I/O,列式存儲還有更高的壓縮比,可以節(jié)省存儲空間。普通行式數(shù)據(jù)庫的壓縮比在 3:1 到 5:1 左右,列式數(shù)據(jù)庫在 8:1 到 30:1,因為單個列的數(shù)據(jù)相似度更高。
列式存儲的隨機寫效率遠低于行式存儲,因為行式存儲時同一行多個列都存儲在連續(xù)空間中,而列式存儲將不同列存儲在不連續(xù)的空間。
一般將列式存儲應用在離線大數(shù)據(jù)分析統(tǒng)計場景,因為這時主要針對部分列進行操作,而且數(shù)據(jù)寫入后無須更新。
關系數(shù)據(jù)庫通過索引進行快速查詢,但在全文搜索的情景下,索引就不夠了,因為:
假設有一個交友網(wǎng)站,信息表如下:
需要匹配性別、地點、語言列。
需要匹配性別、地點、愛好列。
實際搜索中,各種排列組合非常多,關系數(shù)據(jù)庫很難支持。
全文搜索引擎是使用 倒排索引 技術,建立單詞到文檔的索引,例如上面的表信息建立倒排索引:
所以特別適合根據(jù)關鍵詞來查詢文檔內(nèi)容。
上面介紹了幾種典型的NoSQL方案,及各自的適用場景和特點,您可以根據(jù)實際需求進行選擇。
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,
泛指非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應用難題,包括超大規(guī)模數(shù)據(jù)的存儲。
(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 關系型數(shù)據(jù)庫與NoSQL的區(qū)別?
3.1 RDBMS
高度組織化結構化數(shù)據(jù)
結構化查詢語言(SQL)
數(shù)據(jù)和關系都存儲在單獨的表中。
數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言
嚴格的一致性
基礎事務
ACID
關系型數(shù)據(jù)庫遵循ACID規(guī)則
事務在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:
A (Atomicity) 原子性
原子性很容易理解,也就是說事務里的所有操作要么全部做完,要么都不做,事務成功的條件是事務里的所有操作都成功,只要有一個操作失敗,整個事務就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。
C (Consistency) 一致性
一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務的運行不會改變數(shù)據(jù)庫原本的一致性約束。
I (Isolation) 獨立性
所謂的獨立性是指并發(fā)的事務之間不會互相影響,如果一個事務要訪問的數(shù)據(jù)正在被另外一個事務修改,只要另外一個事務未提交,它所訪問的數(shù)據(jù)就不受未提交事務的影響。比如現(xiàn)有有個交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事務提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機也不會丟失。
3.2 NoSQL
代表著不僅僅是SQL
沒有聲明性查詢語言
沒有預定義的模式
鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫
最終一致性,而非ACID屬性
非結構化和不可預知的數(shù)據(jù)
CAP定理
高性能,高可用性和可伸縮性
分布式數(shù)據(jù)庫中的CAP原理(了解)
CAP定理:
Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的
Availability(可用性), 好的響應性能
Partition tolerance(分區(qū)容錯性) 可靠性
P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運作。
定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。
CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,
因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:
CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴展性上不太強大。
CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。
AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐σ恢滦砸蟮鸵恍?。
CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。
而由于當前的網(wǎng)絡硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。
所以我們只能在一致性和可用性之間進行權衡,沒有NoSQL系統(tǒng)能同時保證這三點。
說明:C:強一致性 A:高可用性 P:分布式容忍性
舉例:
CA:傳統(tǒng)Oracle數(shù)據(jù)庫
AP:大多數(shù)網(wǎng)站架構的選擇
CP:Redis、Mongodb
注意:分布式架構的時候必須做出取舍。
一致性和可用性之間取一個平衡。多余大多數(shù)web應用,其實并不需要強一致性。
因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。
4. 當下NoSQL的經(jīng)典應用
當下的應用是 SQL 與 NoSQL 一起使用的。
代表項目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型機,很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設備,也很貴的。
難點:
數(shù)據(jù)類型多樣性。
數(shù)據(jù)源多樣性和變化重構。
數(shù)據(jù)源改造而服務平臺不需要大面積重構。
Web1.0的時代,數(shù)據(jù)訪問量很有限,用一夫當關的高性能的單點服務器可以解決大部分問題。
隨著Web2.0的時代的到來,用戶訪問量大幅度提升,同時產(chǎn)生了大量的用戶數(shù)據(jù)。加上后來的智能移動設備的普及,所有的互聯(lián)網(wǎng)平臺都面臨了巨大的性能挑戰(zhàn)。
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關系型的數(shù)據(jù)庫。
NoSQL 不依賴業(yè)務邏輯方式存儲,而以簡單的key-value模式存儲。因此大大的增加了數(shù)據(jù)庫的擴展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式數(shù)據(jù)庫 列式數(shù)據(jù)庫 Hbase Hbase
HBase是Hadoop項目中的數(shù)據(jù)庫。它用于需要對大量的數(shù)據(jù)進行隨機、實時的讀寫操作的場景中。
HBase的目標就是處理數(shù)據(jù)量非常龐大的表,可以用普通的計算機處理超過10億行數(shù)據(jù),還可處理有數(shù)百萬列元素的數(shù)據(jù)表。
Cassandra Cassandra
Apache Cassandra是一款免費的開源NoSQL數(shù)據(jù)庫,其設計目的在于管理由大量商用服務器構建起來的龐大集群上的海量數(shù)據(jù)集(數(shù)據(jù)量通常達到PB級別)。在眾多顯著特性當中,Cassandra最為卓越的長處是對寫入及讀取操作進行規(guī)模調(diào)整,而且其不強調(diào)主集群的設計思路能夠以相對直觀的方式簡化各集群的創(chuàng)建與擴展流程。
主要應用:社會關系,公共交通網(wǎng)絡,地圖及網(wǎng)絡拓譜(n*(n-1)/2)
特點:
它們可以處理超大量的數(shù)據(jù)。
它們運行在便宜的PC服務器集群上。
PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構可以省去將Web或Java應用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結構非常簡單時,SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認關系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因為NoSQL項目都是開源的,因此它們?nèi)狈烫峁┑恼街С帧_@一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點:
易擴展
NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關系數(shù)據(jù)庫的關系型特性。數(shù)據(jù)之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關系性,數(shù)據(jù)庫的結構簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。
主要應用:
Apache HBase
這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設計應用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務。
Apache Spark
該技術采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構建在HDFS上,能與Hadoop很好的結合,而且運行速度比MapReduce快100倍。
Apache Hadoop
該技術迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復雜的分布式應用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結構化、半結構化和甚至非結構化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。
Gephi
它可以用來對信息進行關聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。
MongoDB
這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術已經(jīng)被廣泛的應用于大數(shù)據(jù)管理。MongoDB是一個應用開源技術開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務器也作為一個參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計算領域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術來提供大數(shù)據(jù)管理服務,但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術,不過基于這些技術的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術,而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。
IBM
當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應對高性能計算的工作負載管理等眾多技術?!?/p>
Intel
和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡文件系統(tǒng)(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關系和市場營銷。