NoSQL太火,冒出太多產(chǎn)品了,保守估計(jì)也成百上千了。
網(wǎng)站設(shè)計(jì)制作過程拒絕使用模板建站;使用PHP+MYSQL原生開發(fā)可交付網(wǎng)站源代碼;符合網(wǎng)站優(yōu)化排名的后臺管理系統(tǒng);成都網(wǎng)站設(shè)計(jì)、成都做網(wǎng)站收費(fèi)合理;免費(fèi)進(jìn)行網(wǎng)站備案等企業(yè)網(wǎng)站建設(shè)一條龍服務(wù).我們是一家持續(xù)穩(wěn)定運(yùn)營了10余年的創(chuàng)新互聯(lián)建站網(wǎng)站建設(shè)公司。
互聯(lián)網(wǎng)公司常用的基本集中在以下幾種,每種只舉一個(gè)比較常見或者應(yīng)用比較成功的例子吧。
1. In-Memory KV Store : Redis
in memory key-value store,同時(shí)提供了更加豐富的數(shù)據(jù)結(jié)構(gòu)和運(yùn)算的能力,成功用法是替代memcached,通過checkpoint和commit log提供了快速的宕機(jī)恢復(fù),同時(shí)支持replication提供讀可擴(kuò)展和高可用。
2. Disk-Based KV Store: Leveldb
真正基于磁盤的key-value storage, 模型單一簡單,數(shù)據(jù)量不受限于內(nèi)存大小,數(shù)據(jù)落盤高可靠,Google的幾位大神出品的精品,LSM模型天然寫優(yōu)化,順序?qū)懕P的方式對于新硬件ssd再適合不過了,不足是僅提供了一個(gè)庫,需要自己封裝server端。
3. Document Store: Mongodb
分布式nosql,具備了區(qū)別mysql的最大亮點(diǎn):可擴(kuò)展性。mongodb 最新引人的莫過于提供了sql接口,是目前nosql里最像mysql的,只是沒有ACID的特性,發(fā)展很快,支持了索引等特性,上手容易,對于數(shù)據(jù)量遠(yuǎn)超內(nèi)存限制的場景來說,還需要慎重。
4. Column Table Store: HBase
這個(gè)富二代似乎不用贅述了,最大的優(yōu)勢是開源,對于普通的scan和基于行的get等基本查詢,性能完全不是問題,只是只提供裸的api,易用性上是短板,可擴(kuò)展性方面是最強(qiáng)的,其次坐上了Hadoop的快車,社區(qū)發(fā)展很快,各種基于其上的開源產(chǎn)品不少,來解決諸如join、聚集運(yùn)算等復(fù)雜查詢。
基本含義NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)據(jù)存儲,相對于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運(yùn)用,這一概念無疑是一種全新的思維的注入。NoSQLNoSQL數(shù)據(jù)庫的四大分類鍵值(Key-Value)存儲數(shù)據(jù)庫這一類數(shù)據(jù)庫主要會(huì)使用到一個(gè)哈希表,這個(gè)表中有一個(gè)特定的鍵和一個(gè)指針指向特定的數(shù)據(jù)。Key/value模型對于IT系統(tǒng)來說的優(yōu)勢在于簡單、易部署。但是如果DBA只對部分值進(jìn)行查詢或更新的時(shí)候,Key/value就顯得效率低下了。[3] 舉例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存儲數(shù)據(jù)庫。這部分?jǐn)?shù)據(jù)庫通常是用來應(yīng)對分布式存儲的海量數(shù)據(jù)。鍵仍然存在,但是它們的特點(diǎn)是指向了多個(gè)列。這些列是由列家族來安排的。如:Cassandra, HBase, Riak.文檔型數(shù)據(jù)庫文檔型數(shù)據(jù)庫的靈感是來自于Lotus Notes辦公軟件的,而且它同第一種鍵值存儲相類似。該類型的數(shù)據(jù)模型是版本化的文檔,半結(jié)構(gòu)化的文檔以特定的格式存儲,比如JSON。文檔型數(shù)據(jù)庫可 以看作是鍵值數(shù)據(jù)庫的升級版,允許之間嵌套鍵值。而且文檔型數(shù)據(jù)庫比鍵值數(shù)據(jù)庫的查詢效率更高。如:CouchDB, MongoDb. 國內(nèi)也有文檔型數(shù)據(jù)庫SequoiaDB,已經(jīng)開源。圖形(Graph)數(shù)據(jù)庫圖形結(jié)構(gòu)的數(shù)據(jù)庫同其他行列以及剛性結(jié)構(gòu)的SQL數(shù)據(jù)庫不同,它是使用靈活的圖形模型,并且能夠擴(kuò)展到多個(gè)服務(wù)器上。NoSQL數(shù)據(jù)庫沒有標(biāo)準(zhǔn)的查詢語言(SQL),因此進(jìn)行數(shù)據(jù)庫查詢需要制定數(shù)據(jù)模型。許多NoSQL數(shù)據(jù)庫都有REST式的數(shù)據(jù)接口或者查詢API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我們總結(jié)NoSQL數(shù)據(jù)庫在以下的這幾種情況下比較適用:1、數(shù)據(jù)模型比較簡單;2、需要靈活性更強(qiáng)的IT系統(tǒng);3、對數(shù)據(jù)庫性能要求較高;4、不需要高度的數(shù)據(jù)一致性;5、對于給定key,比較容易映射復(fù)雜值的環(huán)境。
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,
泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點(diǎn)得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重?cái)?shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題,包括超大規(guī)模數(shù)據(jù)的存儲。
(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴(kuò)展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 關(guān)系型數(shù)據(jù)庫與NoSQL的區(qū)別?
3.1 RDBMS
高度組織化結(jié)構(gòu)化數(shù)據(jù)
結(jié)構(gòu)化查詢語言(SQL)
數(shù)據(jù)和關(guān)系都存儲在單獨(dú)的表中。
數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言
嚴(yán)格的一致性
基礎(chǔ)事務(wù)
ACID
關(guān)系型數(shù)據(jù)庫遵循ACID規(guī)則
事務(wù)在英文中是transaction,和現(xiàn)實(shí)世界中的交易很類似,它有如下四個(gè)特性:
A (Atomicity) 原子性
原子性很容易理解,也就是說事務(wù)里的所有操作要么全部做完,要么都不做,事務(wù)成功的條件是事務(wù)里的所有操作都成功,只要有一個(gè)操作失敗,整個(gè)事務(wù)就失敗,需要回滾。比如銀行轉(zhuǎn)賬,從A賬戶轉(zhuǎn)100元至B賬戶,分為兩個(gè)步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會(huì)莫名其妙少了100元。
C (Consistency) 一致性
一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務(wù)的運(yùn)行不會(huì)改變數(shù)據(jù)庫原本的一致性約束。
I (Isolation) 獨(dú)立性
所謂的獨(dú)立性是指并發(fā)的事務(wù)之間不會(huì)互相影響,如果一個(gè)事務(wù)要訪問的數(shù)據(jù)正在被另外一個(gè)事務(wù)修改,只要另外一個(gè)事務(wù)未提交,它所訪問的數(shù)據(jù)就不受未提交事務(wù)的影響。比如現(xiàn)有有個(gè)交易是從A賬戶轉(zhuǎn)100元至B賬戶,在這個(gè)交易還未完成的情況下,如果此時(shí)B查詢自己的賬戶,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事務(wù)提交后,它所做的修改將會(huì)永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機(jī)也不會(huì)丟失。
3.2 NoSQL
代表著不僅僅是SQL
沒有聲明性查詢語言
沒有預(yù)定義的模式
鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫
最終一致性,而非ACID屬性
非結(jié)構(gòu)化和不可預(yù)知的數(shù)據(jù)
CAP定理
高性能,高可用性和可伸縮性
分布式數(shù)據(jù)庫中的CAP原理(了解)
CAP定理:
Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動(dòng)都是同步的
Availability(可用性), 好的響應(yīng)性能
Partition tolerance(分區(qū)容錯(cuò)性) 可靠性
P: 系統(tǒng)中任意信息的丟失或失敗不會(huì)影響系統(tǒng)的繼續(xù)運(yùn)作。
定理:任何分布式系統(tǒng)只可同時(shí)滿足二點(diǎn),沒法三者兼顧。
CAP理論的核心是:一個(gè)分布式系統(tǒng)不可能同時(shí)很好的滿足一致性,可用性和分區(qū)容錯(cuò)性這三個(gè)需求,
因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:
CA - 單點(diǎn)集群,滿足一致性,可用性的系統(tǒng),通常在可擴(kuò)展性上不太強(qiáng)大。
CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。
AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通常可能對一致性要求低一些。
CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實(shí)現(xiàn)上面的兩點(diǎn)。
而由于當(dāng)前的網(wǎng)絡(luò)硬件肯定會(huì)出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實(shí)現(xiàn)的。
所以我們只能在一致性和可用性之間進(jìn)行權(quán)衡,沒有NoSQL系統(tǒng)能同時(shí)保證這三點(diǎn)。
說明:C:強(qiáng)一致性 A:高可用性 P:分布式容忍性
舉例:
CA:傳統(tǒng)Oracle數(shù)據(jù)庫
AP:大多數(shù)網(wǎng)站架構(gòu)的選擇
CP:Redis、Mongodb
注意:分布式架構(gòu)的時(shí)候必須做出取舍。
一致性和可用性之間取一個(gè)平衡。多余大多數(shù)web應(yīng)用,其實(shí)并不需要強(qiáng)一致性。
因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。
4. 當(dāng)下NoSQL的經(jīng)典應(yīng)用
當(dāng)下的應(yīng)用是 SQL 與 NoSQL 一起使用的。
代表項(xiàng)目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型機(jī),很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設(shè)備,也很貴的。
難點(diǎn):
數(shù)據(jù)類型多樣性。
數(shù)據(jù)源多樣性和變化重構(gòu)。
數(shù)據(jù)源改造而服務(wù)平臺不需要大面積重構(gòu)。
NoSQL 數(shù)據(jù)庫因其功能性、易于開發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們越來越多地用于大數(shù)據(jù)和實(shí)時(shí) Web 應(yīng)用程序,在本文中,我們通過示例討論 NoSQL、何時(shí)使用 NoSQL 與 SQL 及其用例。
NoSQL是一種下一代數(shù)據(jù)庫管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。
“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來就已經(jīng)存在類似的數(shù)據(jù)庫。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。
在處理大量數(shù)據(jù)時(shí),任何關(guān)系數(shù)據(jù)庫管理系統(tǒng) (RDBMS) 的響應(yīng)時(shí)間都會(huì)變慢。為了解決這個(gè)問題,我們可以通過升級現(xiàn)有硬件來“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。
NoSQL 對于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。
一些流行的 NoSQL 數(shù)據(jù)庫包括:
隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對象來更好地捕獲這些信息。
傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語言)語法來存儲和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫包含廣泛的功能,可以存儲和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。
有時(shí),NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語言或與 SQL 數(shù)據(jù)庫并列。SQL 和 NoSQL DBMS 之間的一個(gè)區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫使用 JOIN 子句來組合來自兩個(gè)或多個(gè)表的行,因?yàn)?NoSQL 數(shù)據(jù)庫本質(zhì)上不是表格的,所以這個(gè)功能并不總是可行或相關(guān)的。
但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫傾向于以不同的方式解決類似的問題。
一般來說,在以下情況下,NoSQL 比 SQL 更可?。?/p>
許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫,從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫的一些企業(yè)用例。
內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫可以通過其靈活和開放的數(shù)據(jù)模型為存儲多媒體內(nèi)容提供更好的選擇。
例如,福布斯在短短幾個(gè)月內(nèi)就構(gòu)建了一個(gè)基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。
大數(shù)據(jù)是指太大而無法通過傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時(shí)存儲和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時(shí)使用流處理來攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫的功能。
Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒有性能問題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。
物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。
Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動(dòng)態(tài)、非統(tǒng)一的數(shù)據(jù)集。
擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動(dòng)設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。
例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫每分鐘處理數(shù)百萬個(gè)請求,同時(shí)還處理用戶數(shù)據(jù)并提供天氣更新。