真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

python求函數(shù)偏導(dǎo),python 偏導(dǎo)數(shù)

python3的sympy

print(“字符串”),5/2和5//2的結(jié)果是不同的5/2為2.5,5//2為2.

榆林網(wǎng)站建設(shè)公司創(chuàng)新互聯(lián),榆林網(wǎng)站設(shè)計(jì)制作,有大型網(wǎng)站制作公司豐富經(jīng)驗(yàn)。已為榆林成百上千家提供企業(yè)網(wǎng)站建設(shè)服務(wù)。企業(yè)網(wǎng)站搭建\外貿(mào)網(wǎng)站制作要多少錢,請找那個(gè)售后服務(wù)好的榆林做網(wǎng)站的公司定做!

python2需要導(dǎo)入from_future_import division執(zhí)行普通的除法。

1/2和1//2的結(jié)果0.5和0.

%號為取模運(yùn)算。

乘方運(yùn)算為2**3,-2**3和-(2**3)是等價(jià)的。

from sympy import*導(dǎo)入庫

x,y,z=symbols('x y z'),定義變量

init_printing(use_unicode=True)設(shè)置打印方式。

python的內(nèi)部常量有pi,

函數(shù)simplify,simplify(sin(x)**2 + cos(x)**2)化簡結(jié)果為1,

simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化簡結(jié)果為x-1?;嗁ゑR函數(shù)。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。

expand((x + 1)**2)展開多項(xiàng)式。

expand((x + 1)*(x - 2) - (x - 1)*x)

因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2

from_future_import division

x,y,z,t=symbols('x y z t')定義變量,

k, m, n = symbols('k m n', integer=True)定義三個(gè)整數(shù)變量。

f, g, h = symbols('f g h', cls=Function)定義的類型為函數(shù)。

factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一個(gè)列表,表示因式的冪,(1, [(z, 1), (x + 2*y, 2)])

expand((cos(x) + sin(x))**2)展開多項(xiàng)式。

expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)將x合并。將x元素按階次整合。

collected_expr.coeff(x, 2)直接取出變量collected_expr的x的二次冪的系數(shù)。

cancel()is more efficient thanfactor().

cancel((x**2 + 2*x + 1)/(x**2 + x))

,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)

expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)

asin(1)

trigsimp(sin(x)**2 + cos(x)**2)三角函數(shù)表達(dá)式化簡,

trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)

trigsimp(sin(x)*tan(x)/sec(x))

trigsimp(cosh(x)**2 + sinh(x)**2)雙曲函數(shù)。

三角函數(shù)展開,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))

x, y = symbols('x y', positive=True)正數(shù),a, b = symbols('a b', real=True)實(shí)數(shù),z, t, c = symbols('z t c')定義變量的方法。

sqrt(x) == x**Rational(1, 2)判斷是否相等。

powsimp(x**a*x**b)冪函數(shù)的乘法,不同冪的乘法,必須先定義a和b。powsimp(x**a*y**a)相同冪的乘法。

powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.

powsimp(t**c*z**c, force=True)這樣的話就可以得到化簡過的式子。聲明強(qiáng)制進(jìn)行化簡。

(z*t)**2,sqrt(x*y)

第一個(gè)展開expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展開,

expand_power_base((z*t)**c, force=True)強(qiáng)制展開。

powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)

ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),

expand_log(log(x*y))展開為log(x) + log(y),但是python3沒有。這是因?yàn)樾枰獙定義為positive。這是必須的,否則不會被展開。expand_log(log(x/y)),expand_log(log(x**n))

As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。

expand_log(log(z**2), force=True),強(qiáng)制展開。

logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。

factorial(n)階乘,binomial(n, k)等于c(n,k),gamma(z)伽馬函數(shù)。

hyper([1, 2], [3], z),

tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽馬函數(shù)重寫階乘。

expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),

hyperexpand(hyper([1, 1], [2], z)),

combsimp(factorial(n)/factorial(n - 3))化簡,combsimp(binomial(n+1, k+1)/binomial(n, k))化簡。combsimp(gamma(x)*gamma(1 - x))

自定義函數(shù)

def list_to_frac(l):

expr = Integer(0)

for i in reversed(l[1:]):

expr += i

expr = 1/expr

return l[0] + expr

list_to_frac([x, y, z])結(jié)果為x + 1/z,這個(gè)結(jié)果是錯(cuò)誤的。

syms = symbols('a0:5'),定義syms,得到的結(jié)果為(a0, a1, a2, a3, a4)。

這樣也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作錯(cuò)誤 。發(fā)現(xiàn)python和自動縮進(jìn)有關(guān),所以一定看好自動縮進(jìn)的距離。list_to_frac([1, 2, 3, 4])結(jié)果為43/30。

使用cancel可以將生成的分式化簡,frac = cancel(frac)化簡為一個(gè)分?jǐn)?shù)線的分式。

(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)

a0, a1, a2, a3, a4 = syms定義a0到a4,frac = apart(frac, a0)可將a0提出來。frac=1/(frac-a0)將a0去掉取倒。frac = apart(frac, a1)提出a1。

help("modules"),模塊的含義,help("modules yourstr")模塊中包含的字符串的意思。,

help("topics"),import os.path + help("os.path"),help("list"),help("open")

# -*- coding: UTF-8 -*-聲明之后就可以在ide中使用中文注釋。

定義

l = list(symbols('a0:5'))定義列表得到[a0, a1, a2, a3, a4]

fromsympyimport*

x,y,z=symbols('x y z')

init_printing(use_unicode=True)

diff(cos(x),x)求導(dǎo)。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等價(jià)。

diff(expr, x, y, 2, z, 4)求出表達(dá)式的y的2階,z的4階,x的1階導(dǎo)數(shù)。和diff(expr, x, y, y, z, 4)等價(jià)。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏導(dǎo)。但是不顯示。之后用deriv.doit()即可顯示

integrate(cos(x), x)積分。定積分integrate(exp(-x), (x, 0, oo))無窮大用2個(gè)oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重積分。print(expr)print的使用。

expr = Integral(log(x)**2, x),expr.doit()積分得到x*log(x)**2 - 2*x*log(x) + 2*x。

integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -

exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)連用。

limit(sin(x)/x,x,0),not-a-number表示nan算不出來,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()連用。左右極限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。

Series Expansion級數(shù)展開。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()將無窮小移除。exp(x-6).series(x,x0=6),,得到

-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5階。

f=Function('f')定義函數(shù)變量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2階,,as_finite_diff(dfdx)函數(shù)和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。

Eq(x, y),,solveset(Eq(x**2, 1), x)解出來x,當(dāng)二式相等。和solveset(Eq(x**2 - 1, 0), x)等價(jià)。solveset(x**2 - 1, x)

solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出來定義域。solveset(exp(x), x)? ? # No solution exists解出EmptySet()表示空集。

等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩陣法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}

A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多項(xiàng)式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2個(gè)3的重根,1個(gè)0根。solve([x*y - 1, x - 2], x, y)解出坐標(biāo)。

f, g = symbols('f g', cls=Function)函數(shù)的定義,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))結(jié)合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出來Eq(f(x) + cos(f(x)), C1),,

Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])

N=Matrix([0,1,1])

M*N符合矩陣的乘法。M.shape顯示矩陣的行列數(shù)。

M.row(0)獲取M的第0行。M.col(-1)獲取倒數(shù)第一列。

M.col_del(0)刪掉第1列。M.row_del(1)刪除第二行,序列是從0開始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。

M+N矩陣相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求轉(zhuǎn)置。

eye(3)單位。zeros(2, 3),0矩陣,ones(3, 2)全1,diag(1, 2, 3)對角矩陣。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([

[-1, 0, 0, 0],

[ 0, 1, 1, 0],

[ 0, 1, 1, 0],

[ 0, 0, 0, 5],

[ 0, 0, 0, 7],

[ 0, 0, 0, 5]])矩陣。

Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])

一行一行顯示,,M.det()求行列式。M.rref()矩陣化簡。得到結(jié)果為Matrix([

[1, 0,? 1,? 3],

[0, 1, 2/3, 1/3],

[0, 0,? 0,? 0]]), [0, 1])。

M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()

Columnspace

M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])

M = Matrix([[3, -2,? 4, -2], [5,? 3, -3, -2], [5, -2,? 2, -2], [5, -2, -3,? 3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.

P, D = M.diagonalize(),P得Matrix([

[0, 1, 1,? 0],

[1, 1, 1, -1],

[1, 1, 1,? 0],

[1, 1, 0,? 1]]),,D為Matrix([

[-2, 0, 0, 0],

[ 0, 3, 0, 0],

[ 0, 0, 5, 0],

[ 0, 0, 0, 5]])

P*D*P**-1 == M返回為True。lamda = symbols('lamda')。

lamda = symbols('lamda')定義變量,p = M.charpoly(lamda)和factor(p)

expr = x**2 + x*y,srepr(expr)可以將表達(dá)式說明計(jì)算法則,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。

x = symbols('x')和x = Symbol('x')是一樣的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y

type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。

Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函數(shù)為冪次。

expr = Add(x, x),expr.func。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args將表達(dá)式分解為得到(3, x, y**2),,expr.func(*expr.args)合并。expr == expr.func(*expr.args)返回True。expr.args[2]得到y(tǒng)**2,expr.args[1]得到x,expr.args[0]得到3.。

expr.args[2].args得到(y, 2)。。y.args得到空括號。Integer(2).args得到空括號。

from sympy import *

E**(I*pi)+1,可以看出,I和E,pi已將在sympy內(nèi)已定義。

x=Symbol('x'),,expand( E**(I*x) )不能展開,expand(exp(I*x),complex=True)可以展開,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)將x定義為實(shí)數(shù)。再展開expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。

tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出來可讀性好,print(tmp)可讀性不好。。pprint將公式用更好看的格式打印出來,,pprint( series( cos(x), x, 0, 10) )

integrate(x*sin(x), x),,定積分integrate(x*sin(x), (x, 0, 2*pi))。。

用雙重積分求解球的體積。

x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))計(jì)算球的體積。計(jì)算不來,是因?yàn)閟ympy不知道r是大于0的。r = symbols('r', positive=True)這樣定義r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))將r替換。

integrate(circle_area,(x,-r,r))再積分即可。

expression.sub([(x,y),(y,x)])又換到原來的狀況了。

expression.subs(x, y),,將算式中的x替換成y。。

expression.subs({x:y,u:v}) : 使用字典進(jìn)行多次替換。。

expression.subs([(x,y),(u,v)]) : 使用列表進(jìn)行多次替換。。

Python怎么做最優(yōu)化

最優(yōu)化

為什么要做最優(yōu)化呢?因?yàn)樵谏钪校藗兛偸窍M腋V祷蚱渌_(dá)到一個(gè)極值,比如做生意時(shí)希望成本最小,收入最大,所以在很多商業(yè)情境中,都會遇到求極值的情況。

函數(shù)求根

這里「函數(shù)的根」也稱「方程的根」,或「函數(shù)的零點(diǎn)」。

先把我們需要的包加載進(jìn)來。import numpy as npimport scipy as spimport scipy.optimize as optimport matplotlib.pyplot as plt%matplotlib inline

函數(shù)求根和最優(yōu)化的關(guān)系?什么時(shí)候函數(shù)是最小值或最大值?

兩個(gè)問題一起回答:最優(yōu)化就是求函數(shù)的最小值或最大值,同時(shí)也是極值,在求一個(gè)函數(shù)最小值或最大值時(shí),它所在的位置肯定是導(dǎo)數(shù)為 0 的位置,所以要求一個(gè)函數(shù)的極值,必然要先求導(dǎo),使其為 0,所以函數(shù)求根就是為了得到最大值最小值。

scipy.optimize 有什么方法可以求根?

可以用 scipy.optimize 中的 bisect 或 brentq 求根。f = lambda x: np.cos(x) - x # 定義一個(gè)匿名函數(shù)x = np.linspace(-5, 5, 1000) # 先生成 1000 個(gè) xy = f(x) # 對應(yīng)生成 1000 個(gè) f(x)plt.plot(x, y); # 看一下這個(gè)函數(shù)長什么樣子plt.axhline(0, color='k'); # 畫一根橫線,位置在 y=0

opt.bisect(f, -5, 5) # 求取函數(shù)的根0.7390851332155535plt.plot(x, y)plt.axhline(0, color='k')plt.scatter([_], [0], c='r', s=100); # 這里的 [_] 表示上一個(gè) Cell 中的結(jié)果,這里是 x 軸上的位置,0 是 y 上的位置

求根有兩種方法,除了上面介紹的 bisect,還有 brentq,后者比前者快很多。%timeit opt.bisect(f, -5, 5)%timeit opt.brentq(f, -5, 5)10000 loops, best of 3: 157 s per loopThe slowest run took 11.65 times longer than the fastest. This could mean that an intermediate result is being cached.10000 loops, best of 3: 35.9 s per loop

函數(shù)求最小化

求最小值就是一個(gè)最優(yōu)化問題。求最大值時(shí)只需對函數(shù)做一個(gè)轉(zhuǎn)換,比如加一個(gè)負(fù)號,或者取倒數(shù),就可轉(zhuǎn)成求最小值問題。所以兩者是同一問題。

初始值對最優(yōu)化的影響是什么?

舉例來說,先定義個(gè)函數(shù)。f = lambda x: 1-np.sin(x)/xx = np.linspace(-20., 20., 1000)y = f(x)

當(dāng)初始值為 3 值,使用 minimize 函數(shù)找到最小值。minimize 函數(shù)是在新版的 scipy 里,取代了以前的很多最優(yōu)化函數(shù),是個(gè)通用的接口,背后是很多方法在支撐。x0 = 3xmin = opt.minimize(f, x0).x # x0 是起始點(diǎn),起始點(diǎn)最好離真正的最小值點(diǎn)不要太遠(yuǎn)plt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300); # 起始點(diǎn)畫出來,用圓圈表示plt.scatter(xmin, f(xmin), marker='v', s=300); # 最小值點(diǎn)畫出來,用三角表示plt.xlim(-20, 20);

初始值為 3 時(shí),成功找到最小值。

現(xiàn)在來看看初始值為 10 時(shí),找到的最小值點(diǎn)。x0 = 10xmin = opt.minimize(f, x0).xplt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300)plt.scatter(xmin, f(xmin), marker='v', s=300)plt.xlim(-20, 20);

由上圖可見,當(dāng)初始值為 10 時(shí),函數(shù)找到的是局部最小值點(diǎn),可見 minimize 的默認(rèn)算法對起始點(diǎn)的依賴性。

那么怎么才能不管初始值在哪個(gè)位置,都能找到全局最小值點(diǎn)呢?

如何找到全局最優(yōu)點(diǎn)?

可以使用 basinhopping 函數(shù)找到全局最優(yōu)點(diǎn),相關(guān)背后算法,可以看幫助文件,有提供論文的索引和出處。

我們設(shè)初始值為 10 看是否能找到全局最小值點(diǎn)。x0 = 10from scipy.optimize import basinhoppingxmin = basinhopping(f,x0,stepsize = 5).xplt.plot(x, y);plt.scatter(x0, f(x0), marker='o', s=300);plt.scatter(xmin, f(xmin), marker='v', s=300);plt.xlim(-20, 20);

當(dāng)起始點(diǎn)在比較遠(yuǎn)的位置,依然成功找到了全局最小值點(diǎn)。

如何求多元函數(shù)最小值?

以二元函數(shù)為例,使用 minimize 求對應(yīng)的最小值。def g(X): x,y = X return (x-1)**4 + 5 * (y-1)**2 - 2*x*yX_opt = opt.minimize(g, (8, 3)).x # (8,3) 是起始點(diǎn)print X_opt[ 1.88292611 1.37658521]fig, ax = plt.subplots(figsize=(6, 4)) # 定義畫布和圖形x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, g((X, Y)), 50) # 等高線圖ax.plot(X_opt[0], X_opt[1], 'r*', markersize=15) # 最小點(diǎn)的位置是個(gè)元組ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax) # colorbar 表示顏色越深,高度越高fig.tight_layout()

畫3D 圖。from mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmfig = plt.figure()ax = fig.gca(projection='3d')x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)surf = ax.plot_surface(X, Y, g((X,Y)), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)cset = ax.contour(X, Y, g((X,Y)), zdir='z',offset=-5, cmap=cm.coolwarm)fig.colorbar(surf, shrink=0.5, aspect=5);

曲線擬合

曲線擬合和最優(yōu)化有什么關(guān)系?

曲線擬合的問題是,給定一組數(shù)據(jù),它可能是沿著一條線散布的,這時(shí)要找到一條最優(yōu)的曲線來擬合這些數(shù)據(jù),也就是要找到最好的線來代表這些點(diǎn),這里的最優(yōu)是指這些點(diǎn)和線之間的距離是最小的,這就是為什么要用最優(yōu)化問題來解決曲線擬合問題。

舉例說明,給一些點(diǎn),找到一條線,來擬合這些點(diǎn)。

先給定一些點(diǎn):N = 50 # 點(diǎn)的個(gè)數(shù)m_true = 2 # 斜率b_true = -1 # 截距dy = 2.0 # 誤差np.random.seed(0)xdata = 10 * np.random.random(N) # 50 個(gè) x,服從均勻分布ydata = np.random.normal(b_true + m_true * xdata, dy) # dy 是標(biāo)準(zhǔn)差plt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');

上面的點(diǎn)整體上呈現(xiàn)一個(gè)線性關(guān)系,要找到一條斜線來代表這些點(diǎn),這就是經(jīng)典的一元線性回歸。目標(biāo)就是找到最好的線,使點(diǎn)和線的距離最短。要優(yōu)化的函數(shù)是點(diǎn)和線之間的距離,使其最小。點(diǎn)是確定的,而線是可變的,線是由參數(shù)值,斜率和截距決定的,這里就是要通過優(yōu)化距離找到最優(yōu)的斜率和截距。

點(diǎn)和線的距離定義如下:def chi2(theta, x, y): return np.sum(((y - theta[0] - theta[1] * x)) ** 2)

上式就是誤差平方和。

誤差平方和是什么?有什么作用?

誤差平方和公式為:

誤差平方和大,表示真實(shí)的點(diǎn)和預(yù)測的線之間距離太遠(yuǎn),說明擬合得不好,最好的線,應(yīng)該是使誤差平方和最小,即最優(yōu)的擬合線,這里是條直線。

誤差平方和就是要最小化的目標(biāo)函數(shù)。

找到最優(yōu)的函數(shù),即斜率和截距。theta_guess = [0, 1] # 初始值theta_best = opt.minimize(chi2, theta_guess, args=(xdata, ydata)).xprint(theta_best)[-1.01442005 1.93854656]

上面兩個(gè)輸出即是預(yù)測的直線斜率和截距,我們是根據(jù)點(diǎn)來反推直線的斜率和截距,那么真實(shí)的斜率和截距是多少呢?-1 和 2,很接近了,差的一點(diǎn)是因?yàn)橛性胍舻囊搿fit = np.linspace(0, 10)yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

最小二乘(Least Square)是什么?

上面用的是 minimize 方法,這個(gè)問題的目標(biāo)函數(shù)是誤差平方和,這就又有一個(gè)特定的解法,即最小二乘。

最小二乘的思想就是要使得觀測點(diǎn)和估計(jì)點(diǎn)的距離的平方和達(dá)到最小,這里的“二乘”指的是用平方來度量觀測點(diǎn)與估計(jì)點(diǎn)的遠(yuǎn)近(在古漢語中“平方”稱為“二乘”),“最小”指的是參數(shù)的估計(jì)值要保證各個(gè)觀測點(diǎn)與估計(jì)點(diǎn)的距離的平方和達(dá)到最小。

關(guān)于最小二乘估計(jì)的計(jì)算,涉及更多的數(shù)學(xué)知識,這里不想詳述,其一般的過程是用目標(biāo)函數(shù)對各參數(shù)求偏導(dǎo)數(shù),并令其等于 0,得到一個(gè)線性方程組。具體推導(dǎo)過程可參考斯坦福機(jī)器學(xué)習(xí)講義 第 7 頁。def deviations(theta, x, y): return (y - theta[0] - theta[1] * x)theta_best, ier = opt.leastsq(deviations, theta_guess, args=(xdata, ydata))print(theta_best)[-1.01442016 1.93854659]

最小二乘 leastsq 的結(jié)果跟 minimize 結(jié)果一樣。注意 leastsq 的第一個(gè)參數(shù)不再是誤差平方和 chi2,而是誤差本身 deviations,即沒有平方,也沒有和。yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');

非線性最小二乘

上面是給一些點(diǎn),擬合一條直線,擬合一條曲線也是一樣的。def f(x, beta0, beta1, beta2): # 首先定義一個(gè)非線性函數(shù),有 3 個(gè)參數(shù) return beta0 + beta1 * np.exp(-beta2 * x**2)beta = (0.25, 0.75, 0.5) # 先猜 3 個(gè) betaxdata = np.linspace(0, 5, 50)y = f(xdata, *beta)ydata = y + 0.05 * np.random.randn(len(xdata)) # 給 y 加噪音def g(beta): return ydata - f(xdata, *beta) # 真實(shí) y 和 預(yù)測值的差,求最優(yōu)曲線時(shí)要用到beta_start = (1, 1, 1)beta_opt, beta_cov = opt.leastsq(g, beta_start)print beta_opt # 求到的 3 個(gè)最優(yōu)的 beta 值[ 0.25525709 0.74270226 0.54966466]

拿估計(jì)的 beta_opt 值跟真實(shí)的 beta = (0.25, 0.75, 0.5) 值比較,差不多。fig, ax = plt.subplots()ax.scatter(xdata, ydata) # 畫點(diǎn)ax.plot(xdata, y, 'r', lw=2) # 真實(shí)值的線ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2) # 擬合的線ax.set_xlim(0, 5)ax.set_xlabel(r"$x$", fontsize=18)ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)fig.tight_layout()

除了使用最小二乘,還可以使用曲線擬合的方法,得到的結(jié)果是一樣的。beta_opt, beta_cov = opt.curve_fit(f, xdata, ydata)print beta_opt[ 0.25525709 0.74270226 0.54966466]

有約束的最小化

有約束的最小化是指,要求函數(shù)最小化之外,還要滿足約束條件,舉例說明。

邊界約束def f(X): x, y = X return (x-1)**2 + (y-1)**2 # 這是一個(gè)碗狀的函數(shù)x_opt = opt.minimize(f, (0, 0), method='BFGS').x # 無約束最優(yōu)化

假設(shè)有約束條件,x 和 y 要在一定的范圍內(nèi),如 x 在 2 到 3 之間,y 在 0 和 2 之間。bnd_x1, bnd_x2 = (2, 3), (0, 2) # 對自變量的約束x_cons_opt = opt.minimize(f, np.array([0, 0]), method='L-BFGS-B', bounds=[bnd_x1, bnd_x2]).x # bounds 矩形約束fig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X,Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 沒有約束下的最小值,藍(lán)色五角星ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 有約束下的最小值,紅色星星bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]), bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0], facecolor="grey")ax.add_patch(bound_rect)ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

不等式約束

介紹下相關(guān)理論,先來看下存在等式約束的極值問題求法,比如下面的優(yōu)化問題。

目標(biāo)函數(shù)是 f(w),下面是等式約束,通常解法是引入拉格朗日算子,這里使用 ββ 來表示算子,得到拉格朗日公式為

l 是等式約束的個(gè)數(shù)。

然后分別對 w 和ββ 求偏導(dǎo),使得偏導(dǎo)數(shù)等于 0,然后解出 w 和βiβi,至于為什么引入拉格朗日算子可以求出極值,原因是 f(w) 的 dw 變化方向受其他不等式的約束,dw的變化方向與f(w)的梯度垂直時(shí)才能獲得極值,而且在極值處,f(w) 的梯度與其他等式梯度的線性組合平行,因此他們之間存在線性關(guān)系。(參考《最優(yōu)化與KKT條件》)

對于不等式約束的極值問題

常常利用拉格朗日對偶性將原始問題轉(zhuǎn)換為對偶問題,通過解對偶問題而得到原始問題的解。該方法應(yīng)用在許多統(tǒng)計(jì)學(xué)習(xí)方法中。有興趣的可以參閱相關(guān)資料,這里不再贅述。def f(X): return (X[0] - 1)**2 + (X[1] - 1)**2def g(X): return X[1] - 1.75 - (X[0] - 0.75)**4x_opt = opt.minimize(f, (0, 0), method='BFGS').xconstraints = [dict(type='ineq', fun=g)] # 約束采用字典定義,約束方式為不等式約束,邊界用 g 表示x_cons_opt = opt.minimize(f, (0, 0), method='SLSQP', constraints=constraints).xfig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X, Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 藍(lán)色星星,沒有約束下的最小值ax.plot(x_, 1.75 + (x_-0.75)**4, '', markersize=15)ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color="grey")ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 在區(qū)域約束下的最小值ax.set_ylim(-1, 3)ax.set_xlabel(r"$x_0$", fontsize=18)ax.set_ylabel(r"$x_1$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()

scipy.optimize.minimize 中包括了多種最優(yōu)化算法,每種算法使用范圍不同,詳細(xì)參考官方文檔。

什么是python的偏函數(shù)

偏函數(shù)是將所要承載的函數(shù)作為partial()函數(shù)的第一個(gè)參數(shù),原函數(shù)的各個(gè)參數(shù)依次作為partial()函數(shù)后續(xù)的參數(shù),除非使用關(guān)鍵字參數(shù)。

通過語言描述可能無法理解偏函數(shù)是怎么使用的,那么就舉一個(gè)常見的例子來說明。在這個(gè)例子里,我們實(shí)現(xiàn)了一個(gè)取余函數(shù),對于整數(shù)100,取得對于不同數(shù)m的100%m的余數(shù)。


分享標(biāo)題:python求函數(shù)偏導(dǎo),python 偏導(dǎo)數(shù)
標(biāo)題來源:http://weahome.cn/article/dscpdoe.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部