Apache Hive社區(qū)項目的提交者包括Cloudera,Hortonworks,F(xiàn)acebook,Intel,LinkedIn,Databricks等。Hadoop發(fā)行版支持Hive。與Hbase NoSQL數(shù)據(jù)庫一樣,它通常作為Hadoop分布式數(shù)據(jù)處理應(yīng)用程序的一部分實現(xiàn)。Hive可從Apache Foundation下載,也可從Hadoop分發(fā)商Cloudera,MapR和Hortonworks下載,也可作為AWS Elastic MapReduce的一部分下載。后一種實現(xiàn)方式支持在Simple Storage Service對象存儲中的數(shù)據(jù)集分析。
10年積累的成都網(wǎng)站設(shè)計、網(wǎng)站制作、外貿(mào)營銷網(wǎng)站建設(shè)經(jīng)驗,可以快速應(yīng)對客戶對網(wǎng)站的新想法和需求。提供各種問題對應(yīng)的解決方案。讓選擇我們的客戶得到更好、更有力的網(wǎng)絡(luò)服務(wù)。我雖然不認識你,你也不認識我。但先網(wǎng)站策劃后付款的網(wǎng)站建設(shè)流程,更有黃龍免費網(wǎng)站建設(shè)讓你可以放心的選擇與我們合作。
Apache Hive是首次將SQL查詢功能引入Hadoop生態(tài)系統(tǒng)的軟件之一。在眾多其他SQL-on-Hadoop產(chǎn)品中出現(xiàn)的是BigSQL,Drill,Hadapt,Impala和Presto。此外,Apache Pig已經(jīng)成為面向Hadoop數(shù)據(jù)庫的HiveQL的替代語言。
大數(shù)據(jù)的由來
對于“大數(shù)據(jù)”(Big data)研究機構(gòu)Gartner給出了這樣的定義?!按髷?shù)據(jù)”是需要新處理模式才能具有更強的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應(yīng)海量、高增長率和多樣化的信息資產(chǎn)。
1
麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲、管理、分析方面大大超出了傳統(tǒng)數(shù)據(jù)庫軟件工具能力范圍的數(shù)據(jù)集合,具有海量的數(shù)據(jù)規(guī)模、快速的數(shù)據(jù)流轉(zhuǎn)、多樣的數(shù)據(jù)類型和價值密度低四大特征。
大數(shù)據(jù)技術(shù)的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對這些含有意義的數(shù)據(jù)進行專業(yè)化處理。換而言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實現(xiàn)盈利的關(guān)鍵,在于提高對數(shù)據(jù)的“加工能力”,通過“加工”實現(xiàn)數(shù)據(jù)的“增值”。
從技術(shù)上看,大數(shù)據(jù)與云計算的關(guān)系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無法用單臺的計算機進行處理,必須采用分布式架構(gòu)。它的特色在于對海量數(shù)據(jù)進行分布式數(shù)據(jù)挖掘。但它必須依托云計算的分布式處理、分布式數(shù)據(jù)庫和云存儲、虛擬化技術(shù)。
大數(shù)據(jù)需要特殊的技術(shù),以有效地處理大量的容忍經(jīng)過時間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術(shù),包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫、數(shù)據(jù)挖掘、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫、云計算平臺、互聯(lián)網(wǎng)和可擴展的存儲系統(tǒng)。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大數(shù)據(jù)的應(yīng)用領(lǐng)域
大數(shù)據(jù)無處不在,大數(shù)據(jù)應(yīng)用于各個行業(yè),包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內(nèi)的 社會 各行各業(yè)都已經(jīng)融入了大數(shù)據(jù)的印跡。
制造業(yè),利用工業(yè)大數(shù)據(jù)提升制造業(yè)水平,包括產(chǎn)品故障診斷與預(yù)測、分析工藝流程、改進生產(chǎn)工藝,優(yōu)化生產(chǎn)過程能耗、工業(yè)供應(yīng)鏈分析與優(yōu)化、生產(chǎn)計劃與排程。
金融行業(yè),大數(shù)據(jù)在高頻交易、社交情緒分析和信貸風險分析三大金融創(chuàng)新領(lǐng)域發(fā)揮重大作用。
汽車 行業(yè),利用大數(shù)據(jù)和物聯(lián)網(wǎng)技術(shù)的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。
互聯(lián)網(wǎng)行業(yè),借助于大數(shù)據(jù)技術(shù),可以分析客戶行為,進行商品推薦和針對性廣告投放。
電信行業(yè),利用大數(shù)據(jù)技術(shù)實現(xiàn)客戶離網(wǎng)分析,及時掌握客戶離網(wǎng)傾向,出臺客戶挽留措施。
能源行業(yè),隨著智能電網(wǎng)的發(fā)展,電力公司可以掌握海量的用戶用電信息,利用大數(shù)據(jù)技術(shù)分析用戶用電模式,可以改進電網(wǎng)運行,合理設(shè)計電力需求響應(yīng)系統(tǒng),確保電網(wǎng)運行安全。
物流行業(yè),利用大數(shù)據(jù)優(yōu)化物流網(wǎng)絡(luò),提高物流效率,降低物流成本。
城市管理,可以利用大數(shù)據(jù)實現(xiàn)智能交通、環(huán)保監(jiān)測、城市規(guī)劃和智能安防。
體育 娛樂 ,大數(shù)據(jù)可以幫助我們訓(xùn)練球隊,決定投拍哪種 題財?shù)?影視作品,以及預(yù)測比賽結(jié)果。
安全領(lǐng)域,政府可以利用大數(shù)據(jù)技術(shù)構(gòu)建起強大的國家安全保障體系,企業(yè)可以利用大數(shù)據(jù)抵御網(wǎng)絡(luò)攻擊,警察可以借助大數(shù)據(jù)來預(yù)防犯罪。
個人生活, 大數(shù)據(jù)還可以應(yīng)用于個人生活,利用與每個人相關(guān)聯(lián)的“個人大數(shù)據(jù)”,分析個人生活行為習慣,為其提供更加周到的個性化服務(wù)。
大數(shù)據(jù)的價值,遠遠不止于此,大數(shù)據(jù)對各行各業(yè)的滲透,大大推動了 社會 生產(chǎn)和生活,未來必將產(chǎn)生重大而深遠的影響。
大數(shù)據(jù)方面核心技術(shù)有哪些?
大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲、NoSQL數(shù)據(jù)庫、數(shù)據(jù)倉庫、機器學習、并行計算、可視化等各種技術(shù)范疇和不同的技術(shù)層面。首先給出一個通用化的大數(shù)據(jù)處理框架,主要分為下面幾個方面:數(shù)據(jù)采集與預(yù)處理、數(shù)據(jù)存儲、數(shù)據(jù)清洗、數(shù)據(jù)查詢分析和數(shù)據(jù)可視化。
數(shù)據(jù)采集與預(yù)處理
對于各種來源的數(shù)據(jù),包括移動互聯(lián)網(wǎng)數(shù)據(jù)、社交網(wǎng)絡(luò)的數(shù)據(jù)等,這些結(jié)構(gòu)化和非結(jié)構(gòu)化的海量數(shù)據(jù)是零散的,也就是所謂的數(shù)據(jù)孤島,此時的這些數(shù)據(jù)并沒有什么意義,數(shù)據(jù)采集就是將這些數(shù)據(jù)寫入數(shù)據(jù)倉庫中,把零散的數(shù)據(jù)整合在一起,對這些數(shù)據(jù)綜合起來進行分析。數(shù)據(jù)采集包括文件日志的采集、數(shù)據(jù)庫日志的采集、關(guān)系型數(shù)據(jù)庫的接入和應(yīng)用程序的接入等。在數(shù)據(jù)量比較小的時候,可以寫個定時的腳本將日志寫入存儲系統(tǒng),但隨著數(shù)據(jù)量的增長,這些方法無法提供數(shù)據(jù)安全保障,并且運維困難,需要更強壯的解決方案。
Flume NG
Flume NG作為實時日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù),同時,對數(shù)據(jù)進行簡單處理,并寫到各種數(shù)據(jù)接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三層架構(gòu):Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數(shù)據(jù)源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數(shù)據(jù),讀取成功之后會刪除channel中的信息。
NDC
Logstash
Logstash是開源的服務(wù)器端數(shù)據(jù)處理管道,能夠同時從多個來源采集數(shù)據(jù)、轉(zhuǎn)換數(shù)據(jù),然后將數(shù)據(jù)發(fā)送到您最喜歡的 “存儲庫” 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數(shù)據(jù)來源捕捉事件,能夠以連續(xù)的流式傳輸方式,輕松地從您的日志、指標、Web 應(yīng)用、數(shù)據(jù)存儲以及各種 AWS 服務(wù)采集數(shù)據(jù)。
Sqoop
Sqoop,用來將關(guān)系型數(shù)據(jù)庫和Hadoop中的數(shù)據(jù)進行相互轉(zhuǎn)移的工具,可以將一個關(guān)系型數(shù)據(jù)庫(例如Mysql、Oracle)中的數(shù)據(jù)導(dǎo)入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數(shù)據(jù)導(dǎo)入到關(guān)系型數(shù)據(jù)庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapReduce 作業(yè)(極其容錯的分布式并行計算)來執(zhí)行任務(wù)。Sqoop 的另一大優(yōu)勢是其傳輸大量結(jié)構(gòu)化或半結(jié)構(gòu)化數(shù)據(jù)的過程是完全自動化的。
流式計算
流式計算是行業(yè)研究的一個熱點,流式計算對多個高吞吐量的數(shù)據(jù)源進行實時的清洗、聚合和分析,可以對存在于社交網(wǎng)站、新聞等的數(shù)據(jù)信息流進行快速的處理并反饋,目前大數(shù)據(jù)流分析工具有很多,比如開源的strom,spark streaming等。
Strom集群結(jié)構(gòu)是有一個主節(jié)點(nimbus)和多個工作節(jié)點(supervisor)組成的主從結(jié)構(gòu),主節(jié)點通過配置靜態(tài)指定或者在運行時動態(tài)選舉,nimbus與supervisor都是Storm提供的后臺守護進程,之間的通信是結(jié)合Zookeeper的狀態(tài)變更通知和監(jiān)控通知來處理。nimbus進程的主要職責是管理、協(xié)調(diào)和監(jiān)控集群上運行的topology(包括topology的發(fā)布、任務(wù)指派、事件處理時重新指派任務(wù)等)。supervisor進程等待nimbus分配任務(wù)后生成并監(jiān)控worker(jvm進程)執(zhí)行任務(wù)。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。
Zookeeper
Zookeeper是一個分布式的,開放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。它的作用主要有配置管理、名字服務(wù)、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那么對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數(shù)據(jù)的可靠和一致性,同時它可以通過名字來獲取資源或者服務(wù)的地址等信息,可以監(jiān)控集群中機器的變化,實現(xiàn)了類似于心跳機制的功能。
數(shù)據(jù)存儲
Hadoop作為一個開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計,HDFS作為其核心的存儲引擎,已被廣泛用于數(shù)據(jù)存儲。
HBase
HBase,是一個分布式的、面向列的開源數(shù)據(jù)庫,可以認為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲、NoSQL數(shù)據(jù)庫。HBase是一種Key/Value系統(tǒng),部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用服務(wù)器,來增加計算和存儲能力。
Phoenix
Phoenix,相當于一個Java中間件,幫助開發(fā)工程師能夠像使用JDBC訪問關(guān)系型數(shù)據(jù)庫一樣訪問NoSQL數(shù)據(jù)庫HBase。
Yarn
Yarn是一種Hadoop資源管理器,可為上層應(yīng)用提供統(tǒng)一的資源管理和調(diào)度,它的引入為集群在利用率、資源統(tǒng)一管理和數(shù)據(jù)共享等方面帶來了巨大好處。Yarn由下面的幾大組件構(gòu)成:一個全局的資源管理器ResourceManager、ResourceManager的每個節(jié)點代理NodeManager、表示每個應(yīng)用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。
Mesos
Mesos是一款開源的集群管理軟件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應(yīng)用架構(gòu)。
Redis
Redis是一種速度非常快的非關(guān)系數(shù)據(jù)庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內(nèi)存的鍵值對數(shù)據(jù)持久化到硬盤中,使用復(fù)制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。
Atlas
Atlas是一個位于應(yīng)用程序與MySQL之間的中間件。在后端DB看來,Atlas相當于連接它的客戶端,在前端應(yīng)用看來,Atlas相當于一個DB。Atlas作為服務(wù)端與應(yīng)用程序通訊,它實現(xiàn)了MySQL的客戶端和服務(wù)端協(xié)議,同時作為客戶端與MySQL通訊。它對應(yīng)用程序屏蔽了DB的細節(jié),同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動后會創(chuàng)建多個線程,其中一個為主線程,其余為工作線程。主線程負責監(jiān)聽所有的客戶端連接請求,工作線程只監(jiān)聽主線程的命令請求。
Kudu
Kudu是圍繞Hadoop生態(tài)圈建立的存儲引擎,Kudu擁有和Hadoop生態(tài)圈共同的設(shè)計理念,它運行在普通的服務(wù)器上、可分布式規(guī)模化部署、并且滿足工業(yè)界的高可用要求。其設(shè)計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數(shù)據(jù)分析能力。Kudu不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數(shù)據(jù)分析的要求。Kudu的應(yīng)用場景很廣泛,比如可以進行實時的數(shù)據(jù)分析,用于數(shù)據(jù)可能會存在變化的時序數(shù)據(jù)應(yīng)用等。
在數(shù)據(jù)存儲過程中,涉及到的數(shù)據(jù)表都是成千上百列,包含各種復(fù)雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數(shù)據(jù)進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁盤上的存儲。
數(shù)據(jù)清洗
MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計算,”Map(映射)”和”Reduce(歸約)”,是它的主要思想。它極大的方便了編程人員在不會分布式并行編程的情況下,將自己的程序運行在分布式系統(tǒng)中。
隨著業(yè)務(wù)數(shù)據(jù)量的增多,需要進行訓(xùn)練和清洗的數(shù)據(jù)會變得越來越復(fù)雜,這個時候就需要任務(wù)調(diào)度系統(tǒng),比如oozie或者azkaban,對關(guān)鍵任務(wù)進行調(diào)度和監(jiān)控。
Oozie
Oozie是用于Hadoop平臺的一種工作流調(diào)度引擎,提供了RESTful API接口來接受用戶的提交請求(提交工作流作業(yè)),當提交了workflow后,由工作流引擎負責workflow的執(zhí)行以及狀態(tài)的轉(zhuǎn)換。用戶在HDFS上部署好作業(yè)(MR作業(yè)),然后向Oozie提交Workflow,Oozie以異步方式將作業(yè)(MR作業(yè))提交給Hadoop。這也是為什么當調(diào)用Oozie 的RESTful接口提交作業(yè)之后能立即返回一個JobId的原因,用戶程序不必等待作業(yè)執(zhí)行完成(因為有些大作業(yè)可能會執(zhí)行很久(幾個小時甚至幾天))。Oozie在后臺以異步方式,再將workflow對應(yīng)的Action提交給hadoop執(zhí)行。
Azkaban
Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務(wù)之間的依賴關(guān)系問題。azkaban主要是由三部分構(gòu)成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數(shù)的狀態(tài)信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調(diào)度以及對工作流執(zhí)行過程中的監(jiān)控等;Azkaban Executor Server用來調(diào)度工作流和任務(wù),記錄工作流或者任務(wù)的日志。
流計算任務(wù)的處理平臺Sloth,是網(wǎng)易首個自研流計算平臺,旨在解決公司內(nèi)各產(chǎn)品日益增長的流計算需求。作為一個計算服務(wù)平臺,其特點是易用、實時、可靠,為用戶節(jié)省技術(shù)方面(開發(fā)、運維)的投入,幫助用戶專注于解決產(chǎn)品本身的流計算需求
數(shù)據(jù)查詢分析
Hive
Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫表,并提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數(shù)據(jù),它完全依賴于HDFS和MapReduce。可以將Hive理解為一個客戶端工具,將SQL操作轉(zhuǎn)換為相應(yīng)的MapReduce jobs,然后在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapReduce程序的過程,它的出現(xiàn)可以讓那些精通SQL技能、但是不熟悉MapReduce 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規(guī)模數(shù)據(jù)集上很方便地利用SQL 語言查詢、匯總、分析數(shù)據(jù)。
Hive是為大數(shù)據(jù)批量處理而生的,Hive的出現(xiàn)解決了傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(MySql、Oracle)在大數(shù)據(jù)處理上的瓶頸 。Hive 將執(zhí)行計劃分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一個Query會被編譯成多輪MapReduce,則會有更多的寫中間結(jié)果。由于MapReduce執(zhí)行框架本身的特點,過多的中間過程會增加整個Query的執(zhí)行時間。在Hive的運行過程中,用戶只需要創(chuàng)建表,導(dǎo)入數(shù)據(jù),編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。
Impala
Impala是對Hive的一個補充,可以實現(xiàn)高效的SQL查詢。使用Impala來實現(xiàn)SQL on Hadoop,用來進行大數(shù)據(jù)實時查詢分析。通過熟悉的傳統(tǒng)關(guān)系型數(shù)據(jù)庫的SQL風格來操作大數(shù)據(jù),同時數(shù)據(jù)也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapReduce批處理,而是通過使用與商用并行關(guān)系數(shù)據(jù)庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統(tǒng)計函數(shù)查詢數(shù)據(jù),從而大大降低了延遲。Impala將整個查詢分成一執(zhí)行計劃樹,而不是一連串的MapReduce任務(wù),相比Hive沒了MapReduce啟動時間。
Hive 適合于長時間的批處理查詢分析,而Impala適合于實時交互式SQL查詢,Impala給數(shù)據(jù)人員提供了快速實驗,驗證想法的大數(shù)據(jù)分析工具,可以先使用Hive進行數(shù)據(jù)轉(zhuǎn)換處理,之后使用Impala在Hive處理好后的數(shù)據(jù)集上進行快速的數(shù)據(jù)分析。總的來說:Impala把執(zhí)行計劃表現(xiàn)為一棵完整的執(zhí)行計劃樹,可以更自然地分發(fā)執(zhí)行計劃到各個Impalad執(zhí)行查詢,而不用像Hive那樣把它組合成管道型的map-reduce模式,以此保證Impala有更好的并發(fā)性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。
Spark
Spark擁有Hadoop MapReduce所具有的特點,它將Job中間輸出結(jié)果保存在內(nèi)存中,從而不需要讀取HDFS。Spark 啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負載。Spark 是在 Scala 語言中實現(xiàn)的,它將 Scala 用作其應(yīng)用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數(shù)據(jù)集。
Nutch
Nutch 是一個開源Java 實現(xiàn)的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。
Solr
Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業(yè)級搜索應(yīng)用的全文搜索服務(wù)器。它對外提供類似于Web-service的API接口,用戶可以通過http請求,向搜索引擎服務(wù)器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,并得到XML格式的返回結(jié)果。
Elasticsearch
Elasticsearch是一個開源的全文搜索引擎,基于Lucene的搜索服務(wù)器,可以快速的儲存、搜索和分析海量的數(shù)據(jù)。設(shè)計用于云計算中,能夠達到實時搜索,穩(wěn)定,可靠,快速,安裝使用方便。
還涉及到一些機器學習語言,比如,Mahout主要目標是創(chuàng)建一些可伸縮的機器學習算法,供開發(fā)人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數(shù)據(jù)流圖進行數(shù)值計算的開源軟件庫TensorFlow等,常用的機器學習算法比如,貝葉斯、邏輯回歸、決策樹、神經(jīng)網(wǎng)絡(luò)、協(xié)同過濾等。
數(shù)據(jù)可視化
對接一些BI平臺,將分析得到的數(shù)據(jù)進行可視化,用于指導(dǎo)決策服務(wù)。主流的BI平臺比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內(nèi)的SmallBI和新興的網(wǎng)易有數(shù)等。
在上面的每一個階段,保障數(shù)據(jù)的安全是不可忽視的問題。
基于網(wǎng)絡(luò)身份認證的協(xié)議Kerberos,用來在非安全網(wǎng)絡(luò)中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網(wǎng)絡(luò)環(huán)境下通信,向另一個實體以一種安全的方式證明自己的身份。
控制權(quán)限的ranger是一個Hadoop集群權(quán)限框架,提供操作、監(jiān)控、管理復(fù)雜的數(shù)據(jù)權(quán)限,它提供一個集中的管理機制,管理基于yarn的Hadoop生態(tài)圈的所有數(shù)據(jù)權(quán)限。可以對Hadoop生態(tài)的組件如Hive,Hbase進行細粒度的數(shù)據(jù)訪問控制。通過操作Ranger控制臺,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、數(shù)據(jù)庫、表、字段權(quán)限。這些策略可以為不同的用戶和組來設(shè)置,同時權(quán)限可與hadoop無縫對接。
簡單說有三大核心技術(shù):拿數(shù)據(jù),算數(shù)據(jù),賣數(shù)據(jù)。
特點:
它們可以處理超大量的數(shù)據(jù)。
它們運行在便宜的PC服務(wù)器集群上。
PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點:
易擴展
NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。
Gephi
它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。
MongoDB
這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負載管理等眾多技術(shù)。”
Intel
和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。
Microsoft
微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠的路要走?!?/p>
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。
Teradata
對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。
AMPLab
通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學習、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。
先明白數(shù)據(jù)倉庫的作用--存儲歷史數(shù)據(jù)-進而對數(shù)據(jù)進行分析,只提供查詢-不提供修改1。Hive 的目標是做成數(shù)據(jù)倉庫,所以它提供了sql,提供了文件-表的映射關(guān)系,又由于Hive基于hdfs,所以搜索不提供Update,因為hdfs本身就不支持。2.HBase 是Nosql數(shù)據(jù)庫-所以不要跟傳統(tǒng)混淆并談-Nosql 提供的是另一種思路來滿足高性能的需求,而這些是傳統(tǒng)數(shù)據(jù)庫的短板,與傳統(tǒng)數(shù)據(jù)庫的理念不一樣3.load data 這個可以自己去查。Hbase要使用自己的api4.是的。5.這句話不對。6.映射就是結(jié)構(gòu)對應(yīng)-如文件每一行的第一個字段-映射到Hive表的第一個字段 類似Hibernate的語法解析。
1:Hive中的表是純邏輯表,就只是表的定義等,即表的元數(shù)據(jù)。Hive本身不存儲數(shù)據(jù),它完全依賴HDFS和MapReduce。這樣就可以將結(jié)構(gòu)化的數(shù)據(jù)文件映射為為一張數(shù)據(jù)庫表,并提供完整的SQL查詢功能,并將SQL語句最終轉(zhuǎn)換為MapReduce任務(wù)進行運行。 而HBase表是物理表,適合存放非結(jié)構(gòu)化的數(shù)據(jù)。
2:Hive是基于MapReduce來處理數(shù)據(jù),而MapReduce處理數(shù)據(jù)是基于行的模式;HBase處理數(shù)據(jù)是基于列的而不是基于行的模式,適合海量數(shù)據(jù)的隨機訪問。
3:HBase的表是疏松的存儲的,因此用戶可以給行定義各種不同的列;而Hive表是稠密型,即定義多少列,每一行有存儲固定列數(shù)的數(shù)據(jù)。
4:Hive使用Hadoop來分析處理數(shù)據(jù),而Hadoop系統(tǒng)是批處理系統(tǒng),因此不能保證處理的低遲延問題;而HBase是近實時系統(tǒng),支持實時查詢。
5:Hive不提供row-level的更新,它適用于大量append-only數(shù)據(jù)集(如日志)的批任務(wù)處理。而基于HBase的查詢,支持和row-level的更新。
6:Hive提供完整的SQL實現(xiàn),通常被用來做一些基于歷史數(shù)據(jù)的挖掘、分析。而HBase不適用與有join,多級索引,表關(guān)系復(fù)雜的應(yīng)用場景。
大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲、數(shù)據(jù)庫、數(shù)據(jù)倉庫、機器學習、并行計算、可視化等。
1、數(shù)據(jù)采集與預(yù)處理:FlumeNG實時日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個分布式的,開放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。
2、數(shù)據(jù)存儲:Hadoop作為一個開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計,HDFS作為其核心的存儲引擎,已被廣泛用于數(shù)據(jù)存儲。HBase,是一個分布式的、面向列的開源數(shù)據(jù)庫,可以認為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲、NoSQL數(shù)據(jù)庫。
3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計算。
4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負載。
5、數(shù)據(jù)可視化:對接一些BI平臺,將分析得到的數(shù)據(jù)進行可視化,用于指導(dǎo)決策服務(wù)。