基本含義NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項(xiàng)全新的數(shù)據(jù)庫(kù)革命性運(yùn)動(dòng),早期就有人提出,發(fā)展至2009年趨勢(shì)越發(fā)高漲。NoSQL的擁護(hù)者們提倡運(yùn)用非關(guān)系型的數(shù)據(jù)存儲(chǔ),相對(duì)于鋪天蓋地的關(guān)系型數(shù)據(jù)庫(kù)運(yùn)用,這一概念無(wú)疑是一種全新的思維的注入。NoSQLNoSQL數(shù)據(jù)庫(kù)的四大分類鍵值(Key-Value)存儲(chǔ)數(shù)據(jù)庫(kù)這一類數(shù)據(jù)庫(kù)主要會(huì)使用到一個(gè)哈希表,這個(gè)表中有一個(gè)特定的鍵和一個(gè)指針指向特定的數(shù)據(jù)。Key/value模型對(duì)于IT系統(tǒng)來(lái)說(shuō)的優(yōu)勢(shì)在于簡(jiǎn)單、易部署。但是如果DBA只對(duì)部分值進(jìn)行查詢或更新的時(shí)候,Key/value就顯得效率低下了。[3] 舉例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存儲(chǔ)數(shù)據(jù)庫(kù)。這部分?jǐn)?shù)據(jù)庫(kù)通常是用來(lái)應(yīng)對(duì)分布式存儲(chǔ)的海量數(shù)據(jù)。鍵仍然存在,但是它們的特點(diǎn)是指向了多個(gè)列。這些列是由列家族來(lái)安排的。如:Cassandra, HBase, Riak.文檔型數(shù)據(jù)庫(kù)文檔型數(shù)據(jù)庫(kù)的靈感是來(lái)自于Lotus Notes辦公軟件的,而且它同第一種鍵值存儲(chǔ)相類似。該類型的數(shù)據(jù)模型是版本化的文檔,半結(jié)構(gòu)化的文檔以特定的格式存儲(chǔ),比如JSON。文檔型數(shù)據(jù)庫(kù)可 以看作是鍵值數(shù)據(jù)庫(kù)的升級(jí)版,允許之間嵌套鍵值。而且文檔型數(shù)據(jù)庫(kù)比鍵值數(shù)據(jù)庫(kù)的查詢效率更高。如:CouchDB, MongoDb. 國(guó)內(nèi)也有文檔型數(shù)據(jù)庫(kù)SequoiaDB,已經(jīng)開(kāi)源。圖形(Graph)數(shù)據(jù)庫(kù)圖形結(jié)構(gòu)的數(shù)據(jù)庫(kù)同其他行列以及剛性結(jié)構(gòu)的SQL數(shù)據(jù)庫(kù)不同,它是使用靈活的圖形模型,并且能夠擴(kuò)展到多個(gè)服務(wù)器上。NoSQL數(shù)據(jù)庫(kù)沒(méi)有標(biāo)準(zhǔn)的查詢語(yǔ)言(SQL),因此進(jìn)行數(shù)據(jù)庫(kù)查詢需要制定數(shù)據(jù)模型。許多NoSQL數(shù)據(jù)庫(kù)都有REST式的數(shù)據(jù)接口或者查詢API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我們總結(jié)NoSQL數(shù)據(jù)庫(kù)在以下的這幾種情況下比較適用:1、數(shù)據(jù)模型比較簡(jiǎn)單;2、需要靈活性更強(qiáng)的IT系統(tǒng);3、對(duì)數(shù)據(jù)庫(kù)性能要求較高;4、不需要高度的數(shù)據(jù)一致性;5、對(duì)于給定key,比較容易映射復(fù)雜值的環(huán)境。
創(chuàng)新互聯(lián)建站主要從事網(wǎng)頁(yè)設(shè)計(jì)、PC網(wǎng)站建設(shè)(電腦版網(wǎng)站建設(shè))、wap網(wǎng)站建設(shè)(手機(jī)版網(wǎng)站建設(shè))、響應(yīng)式網(wǎng)站、程序開(kāi)發(fā)、網(wǎng)站優(yōu)化、微網(wǎng)站、小程序制作等,憑借多年來(lái)在互聯(lián)網(wǎng)的打拼,我們?cè)诨ヂ?lián)網(wǎng)網(wǎng)站建設(shè)行業(yè)積累了豐富的成都網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計(jì)、網(wǎng)站設(shè)計(jì)、網(wǎng)絡(luò)營(yíng)銷經(jīng)驗(yàn),集策劃、開(kāi)發(fā)、設(shè)計(jì)、營(yíng)銷、管理等多方位專業(yè)化運(yùn)作于一體。
大數(shù)據(jù)技術(shù)的體系龐大且復(fù)雜,基礎(chǔ)的技術(shù)包含數(shù)據(jù)的采集、數(shù)據(jù)預(yù)處理、分布式存儲(chǔ)、數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、機(jī)器學(xué)習(xí)、并行計(jì)算、可視化等。
1、數(shù)據(jù)采集與預(yù)處理:FlumeNG實(shí)時(shí)日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個(gè)分布式的,開(kāi)放源碼的分布式應(yīng)用程序協(xié)調(diào)服務(wù),提供數(shù)據(jù)同步服務(wù)。
2、數(shù)據(jù)存儲(chǔ):Hadoop作為一個(gè)開(kāi)源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設(shè)計(jì),HDFS作為其核心的存儲(chǔ)引擎,已被廣泛用于數(shù)據(jù)存儲(chǔ)。HBase,是一個(gè)分布式的、面向列的開(kāi)源數(shù)據(jù)庫(kù),可以認(rèn)為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲(chǔ)、NoSQL數(shù)據(jù)庫(kù)。
3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計(jì)算。
4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語(yǔ)句翻譯成MR程序,可以將結(jié)構(gòu)化的數(shù)據(jù)映射為一張數(shù)據(jù)庫(kù)表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負(fù)載。
5、數(shù)據(jù)可視化:對(duì)接一些BI平臺(tái),將分析得到的數(shù)據(jù)進(jìn)行可視化,用于指導(dǎo)決策服務(wù)。
一般將NoSQL數(shù)據(jù)庫(kù)分為四大類:鍵值(Key-Value)存儲(chǔ)數(shù)據(jù)庫(kù)、列存儲(chǔ)數(shù)據(jù)庫(kù)、文檔型數(shù)據(jù)庫(kù)和圖形(Graph)數(shù)據(jù)庫(kù)。它們的數(shù)據(jù)模型、優(yōu)缺點(diǎn)、典型應(yīng)用場(chǎng)景。
鍵值(Key-Value)存儲(chǔ)數(shù)據(jù)庫(kù)Key指向Value的鍵值對(duì),通常用hash表來(lái)實(shí)現(xiàn)查找速度快數(shù)據(jù)無(wú)結(jié)構(gòu)化(通常只被當(dāng)作字符串或者二進(jìn)制數(shù)據(jù))內(nèi)容緩存,主要用于處理大量數(shù)據(jù)的高訪問(wèn)負(fù)載,也用于一些日志系統(tǒng)等。
列存儲(chǔ)數(shù)據(jù)庫(kù),以列簇式存儲(chǔ),將同一列數(shù)據(jù)存在一起查找速度快,可擴(kuò)展性強(qiáng),更容易進(jìn)行分布式擴(kuò)展功能相對(duì)局限分布式的文件系統(tǒng)。
文檔型數(shù)據(jù)庫(kù),Key-Value對(duì)應(yīng)的鍵值對(duì),Value為結(jié)構(gòu)化數(shù)據(jù),數(shù)據(jù)結(jié)構(gòu)要求不嚴(yán)格,表結(jié)構(gòu)可變(不需要像關(guān)系型數(shù)據(jù)庫(kù)一樣需預(yù)先定義表結(jié)構(gòu)),查詢性能不高,而且缺乏統(tǒng)一的查詢語(yǔ)法,Web應(yīng)用。
圖形(Graph)數(shù)據(jù)庫(kù),圖結(jié)構(gòu),利用圖結(jié)構(gòu)相關(guān)算法(如最短路徑尋址,N度關(guān)系查找等),很多時(shí)候需要對(duì)整個(gè)圖做計(jì)算才能得出需要的信息,而且這種結(jié)構(gòu)不太好做分布式的集群方案,社交網(wǎng)絡(luò),推薦系統(tǒng)等。