線性回歸實戰(zhàn)
創(chuàng)新互聯(lián)專注于同江網(wǎng)站建設服務及定制,我們擁有豐富的企業(yè)做網(wǎng)站經(jīng)驗。 熱誠為您提供同江營銷型網(wǎng)站建設,同江網(wǎng)站制作、同江網(wǎng)頁設計、同江網(wǎng)站官網(wǎng)定制、小程序制作服務,打造同江網(wǎng)絡公司原創(chuàng)品牌,更為您提供同江網(wǎng)站排名全網(wǎng)營銷落地服務。使用PyTorch定義線性回歸模型一般分以下幾步:
1.設計網(wǎng)絡架構
2.構建損失函數(shù)(loss)和優(yōu)化器(optimizer)
3.訓練(包括前饋(forward)、反向傳播(backward)、更新模型參數(shù)(update))
#author:yuquanle #data:2018.2.5 #Study of LinearRegression use PyTorch import torch from torch.autograd import Variable # train data x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0]])) y_data = Variable(torch.Tensor([[2.0], [4.0], [6.0]])) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.linear = torch.nn.Linear(1, 1) # One in and one out def forward(self, x): y_pred = self.linear(x) return y_pred # our model model = Model() criterion = torch.nn.MSELoss(size_average=False) # Defined loss function optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # Defined optimizer # Training: forward, loss, backward, step # Training loop for epoch in range(50): # Forward pass y_pred = model(x_data) # Compute loss loss = criterion(y_pred, y_data) print(epoch, loss.data[0]) # Zero gradients optimizer.zero_grad() # perform backward pass loss.backward() # update weights optimizer.step() # After training hour_var = Variable(torch.Tensor([[4.0]])) print("predict (after training)", 4, model.forward(hour_var).data[0][0])
另外有需要云服務器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務器、裸金屬服務器、高防服務器、香港服務器、美國服務器、虛擬主機、免備案服務器”等云主機租用服務以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應用場景需求。