真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

分布式存儲nosql,分布式存儲ipfs

什么是NoSQL數(shù)據(jù)庫

什么是NoSQL數(shù)據(jù)庫?從名稱“非SQL”或“非關系型”衍生而來,這些數(shù)據(jù)庫不使用類似SQL的查詢語言,通常稱為結構化存儲。這些數(shù)據(jù)庫自1960年就已經(jīng)存在,但是直到現(xiàn)在一些大公司(例如Google和Facebook)開始使用它們時,這些數(shù)據(jù)庫才流行起來。該數(shù)據(jù)庫最明顯的優(yōu)勢是擺脫了一組固定的列、連接和類似SQL的查詢語言的限制。有時,NoSQL這個名稱也可能表示“不僅僅SQL”,來確保它們可能支持SQL。 NoSQL數(shù)據(jù)庫使用諸如鍵值、寬列、圖形或文檔之類的數(shù)據(jù)結構,并且可以如JSON之類的不同格式存儲。

創(chuàng)新互聯(lián)2013年至今,先為城子河等服務建站,城子河等地企業(yè),進行企業(yè)商務咨詢服務。為城子河企業(yè)網(wǎng)站制作PC+手機+微官網(wǎng)三網(wǎng)同步一站式服務解決您的所有建站問題。

什么是NoSQL,它有什么優(yōu)缺點?

NoSQL,指的是非關系型的數(shù)據(jù)庫。NoSQL有時也稱作Not Only SQL的縮寫,是對不同于傳統(tǒng)的關系型數(shù)據(jù)庫的數(shù)據(jù)庫管理系統(tǒng)的統(tǒng)稱。

NoSQL用于超大規(guī)模數(shù)據(jù)的存儲。(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。

NoSQL的優(yōu)點/缺點

優(yōu)點:

- 高可擴展性

- 分布式計算

- 低成本

- 架構的靈活性,半結構化數(shù)據(jù)

- 沒有復雜的關系

缺點:

- 沒有標準化

- 有限的查詢功能(到目前為止)

- 最終一致是不直觀的程序 (BY三人行慕課)

nosql數(shù)據(jù)庫的四種類型

一般將NoSQL數(shù)據(jù)庫分為四大類:鍵值(Key-Value)存儲數(shù)據(jù)庫、列存儲數(shù)據(jù)庫、文檔型數(shù)據(jù)庫和圖形(Graph)數(shù)據(jù)庫。它們的數(shù)據(jù)模型、優(yōu)缺點、典型應用場景。

鍵值(Key-Value)存儲數(shù)據(jù)庫Key指向Value的鍵值對,通常用hash表來實現(xiàn)查找速度快數(shù)據(jù)無結構化(通常只被當作字符串或者二進制數(shù)據(jù))內(nèi)容緩存,主要用于處理大量數(shù)據(jù)的高訪問負載,也用于一些日志系統(tǒng)等。

列存儲數(shù)據(jù)庫,以列簇式存儲,將同一列數(shù)據(jù)存在一起查找速度快,可擴展性強,更容易進行分布式擴展功能相對局限分布式的文件系統(tǒng)。

文檔型數(shù)據(jù)庫,Key-Value對應的鍵值對,Value為結構化數(shù)據(jù),數(shù)據(jù)結構要求不嚴格,表結構可變(不需要像關系型數(shù)據(jù)庫一樣需預先定義表結構),查詢性能不高,而且缺乏統(tǒng)一的查詢語法,Web應用。

圖形(Graph)數(shù)據(jù)庫,圖結構,利用圖結構相關算法(如最短路徑尋址,N度關系查找等),很多時候需要對整個圖做計算才能得出需要的信息,而且這種結構不太好做分布式的集群方案,社交網(wǎng)絡,推薦系統(tǒng)等。

大數(shù)據(jù)三大核心技術:拿數(shù)據(jù)、算數(shù)據(jù)、賣數(shù)據(jù)!

大數(shù)據(jù)的由來

對于“大數(shù)據(jù)”(Big data)研究機構Gartner給出了這樣的定義?!按髷?shù)據(jù)”是需要新處理模式才能具有更強的決策力、洞察發(fā)現(xiàn)力和流程優(yōu)化能力來適應海量、高增長率和多樣化的信息資產(chǎn)。

1

麥肯錫全球研究所給出的定義是:一種規(guī)模大到在獲取、存儲、管理、分析方面大大超出了傳統(tǒng)數(shù)據(jù)庫軟件工具能力范圍的數(shù)據(jù)集合,具有海量的數(shù)據(jù)規(guī)模、快速的數(shù)據(jù)流轉、多樣的數(shù)據(jù)類型和價值密度低四大特征。

大數(shù)據(jù)技術的戰(zhàn)略意義不在于掌握龐大的數(shù)據(jù)信息,而在于對這些含有意義的數(shù)據(jù)進行專業(yè)化處理。換而言之,如果把大數(shù)據(jù)比作一種產(chǎn)業(yè),那么這種產(chǎn)業(yè)實現(xiàn)盈利的關鍵,在于提高對數(shù)據(jù)的“加工能力”,通過“加工”實現(xiàn)數(shù)據(jù)的“增值”。

從技術上看,大數(shù)據(jù)與云計算的關系就像一枚硬幣的正反面一樣密不可分。大數(shù)據(jù)必然無法用單臺的計算機進行處理,必須采用分布式架構。它的特色在于對海量數(shù)據(jù)進行分布式數(shù)據(jù)挖掘。但它必須依托云計算的分布式處理、分布式數(shù)據(jù)庫和云存儲、虛擬化技術。

大數(shù)據(jù)需要特殊的技術,以有效地處理大量的容忍經(jīng)過時間內(nèi)的數(shù)據(jù)。適用于大數(shù)據(jù)的技術,包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫、數(shù)據(jù)挖掘、分布式文件系統(tǒng)、分布式數(shù)據(jù)庫、云計算平臺、互聯(lián)網(wǎng)和可擴展的存儲系統(tǒng)。

最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大數(shù)據(jù)的應用領域

大數(shù)據(jù)無處不在,大數(shù)據(jù)應用于各個行業(yè),包括金融、 汽車 、餐飲、電信、能源、體能和 娛樂 等在內(nèi)的 社會 各行各業(yè)都已經(jīng)融入了大數(shù)據(jù)的印跡。

制造業(yè),利用工業(yè)大數(shù)據(jù)提升制造業(yè)水平,包括產(chǎn)品故障診斷與預測、分析工藝流程、改進生產(chǎn)工藝,優(yōu)化生產(chǎn)過程能耗、工業(yè)供應鏈分析與優(yōu)化、生產(chǎn)計劃與排程。

金融行業(yè),大數(shù)據(jù)在高頻交易、社交情緒分析和信貸風險分析三大金融創(chuàng)新領域發(fā)揮重大作用。

汽車 行業(yè),利用大數(shù)據(jù)和物聯(lián)網(wǎng)技術的無人駕駛 汽車 ,在不遠的未來將走入我們的日常生活。

互聯(lián)網(wǎng)行業(yè),借助于大數(shù)據(jù)技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

電信行業(yè),利用大數(shù)據(jù)技術實現(xiàn)客戶離網(wǎng)分析,及時掌握客戶離網(wǎng)傾向,出臺客戶挽留措施。

能源行業(yè),隨著智能電網(wǎng)的發(fā)展,電力公司可以掌握海量的用戶用電信息,利用大數(shù)據(jù)技術分析用戶用電模式,可以改進電網(wǎng)運行,合理設計電力需求響應系統(tǒng),確保電網(wǎng)運行安全。

物流行業(yè),利用大數(shù)據(jù)優(yōu)化物流網(wǎng)絡,提高物流效率,降低物流成本。

城市管理,可以利用大數(shù)據(jù)實現(xiàn)智能交通、環(huán)保監(jiān)測、城市規(guī)劃和智能安防。

體育 娛樂 ,大數(shù)據(jù)可以幫助我們訓練球隊,決定投拍哪種 題財?shù)?影視作品,以及預測比賽結果。

安全領域,政府可以利用大數(shù)據(jù)技術構建起強大的國家安全保障體系,企業(yè)可以利用大數(shù)據(jù)抵御網(wǎng)絡攻擊,警察可以借助大數(shù)據(jù)來預防犯罪。

個人生活, 大數(shù)據(jù)還可以應用于個人生活,利用與每個人相關聯(lián)的“個人大數(shù)據(jù)”,分析個人生活行為習慣,為其提供更加周到的個性化服務。

大數(shù)據(jù)的價值,遠遠不止于此,大數(shù)據(jù)對各行各業(yè)的滲透,大大推動了 社會 生產(chǎn)和生活,未來必將產(chǎn)生重大而深遠的影響。

大數(shù)據(jù)方面核心技術有哪些?

大數(shù)據(jù)技術的體系龐大且復雜,基礎的技術包含數(shù)據(jù)的采集、數(shù)據(jù)預處理、分布式存儲、NoSQL數(shù)據(jù)庫、數(shù)據(jù)倉庫、機器學習、并行計算、可視化等各種技術范疇和不同的技術層面。首先給出一個通用化的大數(shù)據(jù)處理框架,主要分為下面幾個方面:數(shù)據(jù)采集與預處理、數(shù)據(jù)存儲、數(shù)據(jù)清洗、數(shù)據(jù)查詢分析和數(shù)據(jù)可視化。

數(shù)據(jù)采集與預處理

對于各種來源的數(shù)據(jù),包括移動互聯(lián)網(wǎng)數(shù)據(jù)、社交網(wǎng)絡的數(shù)據(jù)等,這些結構化和非結構化的海量數(shù)據(jù)是零散的,也就是所謂的數(shù)據(jù)孤島,此時的這些數(shù)據(jù)并沒有什么意義,數(shù)據(jù)采集就是將這些數(shù)據(jù)寫入數(shù)據(jù)倉庫中,把零散的數(shù)據(jù)整合在一起,對這些數(shù)據(jù)綜合起來進行分析。數(shù)據(jù)采集包括文件日志的采集、數(shù)據(jù)庫日志的采集、關系型數(shù)據(jù)庫的接入和應用程序的接入等。在數(shù)據(jù)量比較小的時候,可以寫個定時的腳本將日志寫入存儲系統(tǒng),但隨著數(shù)據(jù)量的增長,這些方法無法提供數(shù)據(jù)安全保障,并且運維困難,需要更強壯的解決方案。

Flume NG

Flume NG作為實時日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù),同時,對數(shù)據(jù)進行簡單處理,并寫到各種數(shù)據(jù)接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三層架構:Agent層,Collector層和Store層,每一層均可水平拓展。其中Agent包含Source,Channel和 Sink,source用來消費(收集)數(shù)據(jù)源到channel組件中,channel作為中間臨時存儲,保存所有source的組件信息,sink從channel中讀取數(shù)據(jù),讀取成功之后會刪除channel中的信息。

NDC

Logstash

Logstash是開源的服務器端數(shù)據(jù)處理管道,能夠同時從多個來源采集數(shù)據(jù)、轉換數(shù)據(jù),然后將數(shù)據(jù)發(fā)送到您最喜歡的 “存儲庫” 中。一般常用的存儲庫是Elasticsearch。Logstash 支持各種輸入選擇,可以在同一時間從眾多常用的數(shù)據(jù)來源捕捉事件,能夠以連續(xù)的流式傳輸方式,輕松地從您的日志、指標、Web 應用、數(shù)據(jù)存儲以及各種 AWS 服務采集數(shù)據(jù)。

Sqoop

Sqoop,用來將關系型數(shù)據(jù)庫和Hadoop中的數(shù)據(jù)進行相互轉移的工具,可以將一個關系型數(shù)據(jù)庫(例如Mysql、Oracle)中的數(shù)據(jù)導入到Hadoop(例如HDFS、Hive、Hbase)中,也可以將Hadoop(例如HDFS、Hive、Hbase)中的數(shù)據(jù)導入到關系型數(shù)據(jù)庫(例如Mysql、Oracle)中。Sqoop 啟用了一個 MapReduce 作業(yè)(極其容錯的分布式并行計算)來執(zhí)行任務。Sqoop 的另一大優(yōu)勢是其傳輸大量結構化或半結構化數(shù)據(jù)的過程是完全自動化的。

流式計算

流式計算是行業(yè)研究的一個熱點,流式計算對多個高吞吐量的數(shù)據(jù)源進行實時的清洗、聚合和分析,可以對存在于社交網(wǎng)站、新聞等的數(shù)據(jù)信息流進行快速的處理并反饋,目前大數(shù)據(jù)流分析工具有很多,比如開源的strom,spark streaming等。

Strom集群結構是有一個主節(jié)點(nimbus)和多個工作節(jié)點(supervisor)組成的主從結構,主節(jié)點通過配置靜態(tài)指定或者在運行時動態(tài)選舉,nimbus與supervisor都是Storm提供的后臺守護進程,之間的通信是結合Zookeeper的狀態(tài)變更通知和監(jiān)控通知來處理。nimbus進程的主要職責是管理、協(xié)調(diào)和監(jiān)控集群上運行的topology(包括topology的發(fā)布、任務指派、事件處理時重新指派任務等)。supervisor進程等待nimbus分配任務后生成并監(jiān)控worker(jvm進程)執(zhí)行任務。supervisor與worker運行在不同的jvm上,如果由supervisor啟動的某個worker因為錯誤異常退出(或被kill掉),supervisor會嘗試重新生成新的worker進程。

Zookeeper

Zookeeper是一個分布式的,開放源碼的分布式應用程序協(xié)調(diào)服務,提供數(shù)據(jù)同步服務。它的作用主要有配置管理、名字服務、分布式鎖和集群管理。配置管理指的是在一個地方修改了配置,那么對這個地方的配置感興趣的所有的都可以獲得變更,省去了手動拷貝配置的繁瑣,還很好的保證了數(shù)據(jù)的可靠和一致性,同時它可以通過名字來獲取資源或者服務的地址等信息,可以監(jiān)控集群中機器的變化,實現(xiàn)了類似于心跳機制的功能。

數(shù)據(jù)存儲

Hadoop作為一個開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用于數(shù)據(jù)存儲。

HBase

HBase,是一個分布式的、面向列的開源數(shù)據(jù)庫,可以認為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲、NoSQL數(shù)據(jù)庫。HBase是一種Key/Value系統(tǒng),部署在hdfs上,克服了hdfs在隨機讀寫這個方面的缺點,與hadoop一樣,Hbase目標主要依靠橫向擴展,通過不斷增加廉價的商用服務器,來增加計算和存儲能力。

Phoenix

Phoenix,相當于一個Java中間件,幫助開發(fā)工程師能夠像使用JDBC訪問關系型數(shù)據(jù)庫一樣訪問NoSQL數(shù)據(jù)庫HBase。

Yarn

Yarn是一種Hadoop資源管理器,可為上層應用提供統(tǒng)一的資源管理和調(diào)度,它的引入為集群在利用率、資源統(tǒng)一管理和數(shù)據(jù)共享等方面帶來了巨大好處。Yarn由下面的幾大組件構成:一個全局的資源管理器ResourceManager、ResourceManager的每個節(jié)點代理NodeManager、表示每個應用的Application以及每一個ApplicationMaster擁有多個Container在NodeManager上運行。

Mesos

Mesos是一款開源的集群管理軟件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等應用架構。

Redis

Redis是一種速度非??斓姆顷P系數(shù)據(jù)庫,可以存儲鍵與5種不同類型的值之間的映射,可以將存儲在內(nèi)存的鍵值對數(shù)據(jù)持久化到硬盤中,使用復制特性來擴展性能,還可以使用客戶端分片來擴展寫性能。

Atlas

Atlas是一個位于應用程序與MySQL之間的中間件。在后端DB看來,Atlas相當于連接它的客戶端,在前端應用看來,Atlas相當于一個DB。Atlas作為服務端與應用程序通訊,它實現(xiàn)了MySQL的客戶端和服務端協(xié)議,同時作為客戶端與MySQL通訊。它對應用程序屏蔽了DB的細節(jié),同時為了降低MySQL負擔,它還維護了連接池。Atlas啟動后會創(chuàng)建多個線程,其中一個為主線程,其余為工作線程。主線程負責監(jiān)聽所有的客戶端連接請求,工作線程只監(jiān)聽主線程的命令請求。

Kudu

Kudu是圍繞Hadoop生態(tài)圈建立的存儲引擎,Kudu擁有和Hadoop生態(tài)圈共同的設計理念,它運行在普通的服務器上、可分布式規(guī)?;渴稹⒉⑶覞M足工業(yè)界的高可用要求。其設計理念為fast analytics on fast data。作為一個開源的存儲引擎,可以同時提供低延遲的隨機讀寫和高效的數(shù)據(jù)分析能力。Kudu不但提供了行級的插入、更新、刪除API,同時也提供了接近Parquet性能的批量掃描操作。使用同一份存儲,既可以進行隨機讀寫,也可以滿足數(shù)據(jù)分析的要求。Kudu的應用場景很廣泛,比如可以進行實時的數(shù)據(jù)分析,用于數(shù)據(jù)可能會存在變化的時序數(shù)據(jù)應用等。

在數(shù)據(jù)存儲過程中,涉及到的數(shù)據(jù)表都是成千上百列,包含各種復雜的Query,推薦使用列式存儲方法,比如parquent,ORC等對數(shù)據(jù)進行壓縮。Parquet 可以支持靈活的壓縮選項,顯著減少磁盤上的存儲。

數(shù)據(jù)清洗

MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計算,”Map(映射)”和”Reduce(歸約)”,是它的主要思想。它極大的方便了編程人員在不會分布式并行編程的情況下,將自己的程序運行在分布式系統(tǒng)中。

隨著業(yè)務數(shù)據(jù)量的增多,需要進行訓練和清洗的數(shù)據(jù)會變得越來越復雜,這個時候就需要任務調(diào)度系統(tǒng),比如oozie或者azkaban,對關鍵任務進行調(diào)度和監(jiān)控。

Oozie

Oozie是用于Hadoop平臺的一種工作流調(diào)度引擎,提供了RESTful API接口來接受用戶的提交請求(提交工作流作業(yè)),當提交了workflow后,由工作流引擎負責workflow的執(zhí)行以及狀態(tài)的轉換。用戶在HDFS上部署好作業(yè)(MR作業(yè)),然后向Oozie提交Workflow,Oozie以異步方式將作業(yè)(MR作業(yè))提交給Hadoop。這也是為什么當調(diào)用Oozie 的RESTful接口提交作業(yè)之后能立即返回一個JobId的原因,用戶程序不必等待作業(yè)執(zhí)行完成(因為有些大作業(yè)可能會執(zhí)行很久(幾個小時甚至幾天))。Oozie在后臺以異步方式,再將workflow對應的Action提交給hadoop執(zhí)行。

Azkaban

Azkaban也是一種工作流的控制引擎,可以用來解決有多個hadoop或者spark等離線計算任務之間的依賴關系問題。azkaban主要是由三部分構成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban將大多數(shù)的狀態(tài)信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、認證、調(diào)度以及對工作流執(zhí)行過程中的監(jiān)控等;Azkaban Executor Server用來調(diào)度工作流和任務,記錄工作流或者任務的日志。

流計算任務的處理平臺Sloth,是網(wǎng)易首個自研流計算平臺,旨在解決公司內(nèi)各產(chǎn)品日益增長的流計算需求。作為一個計算服務平臺,其特點是易用、實時、可靠,為用戶節(jié)省技術方面(開發(fā)、運維)的投入,幫助用戶專注于解決產(chǎn)品本身的流計算需求

數(shù)據(jù)查詢分析

Hive

Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數(shù)據(jù)映射為一張數(shù)據(jù)庫表,并提供 HQL(Hive SQL)查詢功能。Hive本身不存儲和計算數(shù)據(jù),它完全依賴于HDFS和MapReduce??梢詫ive理解為一個客戶端工具,將SQL操作轉換為相應的MapReduce jobs,然后在hadoop上面運行。Hive支持標準的SQL語法,免去了用戶編寫MapReduce程序的過程,它的出現(xiàn)可以讓那些精通SQL技能、但是不熟悉MapReduce 、編程能力較弱與不擅長Java語言的用戶能夠在HDFS大規(guī)模數(shù)據(jù)集上很方便地利用SQL 語言查詢、匯總、分析數(shù)據(jù)。

Hive是為大數(shù)據(jù)批量處理而生的,Hive的出現(xiàn)解決了傳統(tǒng)的關系型數(shù)據(jù)庫(MySql、Oracle)在大數(shù)據(jù)處理上的瓶頸 。Hive 將執(zhí)行計劃分成map-shuffle-reduce-map-shuffle-reduce…的模型。如果一個Query會被編譯成多輪MapReduce,則會有更多的寫中間結果。由于MapReduce執(zhí)行框架本身的特點,過多的中間過程會增加整個Query的執(zhí)行時間。在Hive的運行過程中,用戶只需要創(chuàng)建表,導入數(shù)據(jù),編寫SQL分析語句即可。剩下的過程由Hive框架自動的完成。

Impala

Impala是對Hive的一個補充,可以實現(xiàn)高效的SQL查詢。使用Impala來實現(xiàn)SQL on Hadoop,用來進行大數(shù)據(jù)實時查詢分析。通過熟悉的傳統(tǒng)關系型數(shù)據(jù)庫的SQL風格來操作大數(shù)據(jù),同時數(shù)據(jù)也是可以存儲到HDFS和HBase中的。Impala沒有再使用緩慢的Hive+MapReduce批處理,而是通過使用與商用并行關系數(shù)據(jù)庫中類似的分布式查詢引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分組成),可以直接從HDFS或HBase中用SELECT、JOIN和統(tǒng)計函數(shù)查詢數(shù)據(jù),從而大大降低了延遲。Impala將整個查詢分成一執(zhí)行計劃樹,而不是一連串的MapReduce任務,相比Hive沒了MapReduce啟動時間。

Hive 適合于長時間的批處理查詢分析,而Impala適合于實時交互式SQL查詢,Impala給數(shù)據(jù)人員提供了快速實驗,驗證想法的大數(shù)據(jù)分析工具,可以先使用Hive進行數(shù)據(jù)轉換處理,之后使用Impala在Hive處理好后的數(shù)據(jù)集上進行快速的數(shù)據(jù)分析??偟膩碚f:Impala把執(zhí)行計劃表現(xiàn)為一棵完整的執(zhí)行計劃樹,可以更自然地分發(fā)執(zhí)行計劃到各個Impalad執(zhí)行查詢,而不用像Hive那樣把它組合成管道型的map-reduce模式,以此保證Impala有更好的并發(fā)性和避免不必要的中間sort與shuffle。但是Impala不支持UDF,能處理的問題有一定的限制。

Spark

Spark擁有Hadoop MapReduce所具有的特點,它將Job中間輸出結果保存在內(nèi)存中,從而不需要讀取HDFS。Spark 啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負載。Spark 是在 Scala 語言中實現(xiàn)的,它將 Scala 用作其應用程序框架。與 Hadoop 不同,Spark 和 Scala 能夠緊密集成,其中的 Scala 可以像操作本地集合對象一樣輕松地操作分布式數(shù)據(jù)集。

Nutch

Nutch 是一個開源Java 實現(xiàn)的搜索引擎。它提供了我們運行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬蟲。

Solr

Solr用Java編寫、運行在Servlet容器(如Apache Tomcat或Jetty)的一個獨立的企業(yè)級搜索應用的全文搜索服務器。它對外提供類似于Web-service的API接口,用戶可以通過http請求,向搜索引擎服務器提交一定格式的XML文件,生成索引;也可以通過Http Get操作提出查找請求,并得到XML格式的返回結果。

Elasticsearch

Elasticsearch是一個開源的全文搜索引擎,基于Lucene的搜索服務器,可以快速的儲存、搜索和分析海量的數(shù)據(jù)。設計用于云計算中,能夠達到實時搜索,穩(wěn)定,可靠,快速,安裝使用方便。

還涉及到一些機器學習語言,比如,Mahout主要目標是創(chuàng)建一些可伸縮的機器學習算法,供開發(fā)人員在Apache的許可下免費使用;深度學習框架Caffe以及使用數(shù)據(jù)流圖進行數(shù)值計算的開源軟件庫TensorFlow等,常用的機器學習算法比如,貝葉斯、邏輯回歸、決策樹、神經(jīng)網(wǎng)絡、協(xié)同過濾等。

數(shù)據(jù)可視化

對接一些BI平臺,將分析得到的數(shù)據(jù)進行可視化,用于指導決策服務。主流的BI平臺比如,國外的敏捷BI Tableau、Qlikview、PowrerBI等,國內(nèi)的SmallBI和新興的網(wǎng)易有數(shù)等。

在上面的每一個階段,保障數(shù)據(jù)的安全是不可忽視的問題。

基于網(wǎng)絡身份認證的協(xié)議Kerberos,用來在非安全網(wǎng)絡中,對個人通信以安全的手段進行身份認證,它允許某實體在非安全網(wǎng)絡環(huán)境下通信,向另一個實體以一種安全的方式證明自己的身份。

控制權限的ranger是一個Hadoop集群權限框架,提供操作、監(jiān)控、管理復雜的數(shù)據(jù)權限,它提供一個集中的管理機制,管理基于yarn的Hadoop生態(tài)圈的所有數(shù)據(jù)權限??梢詫adoop生態(tài)的組件如Hive,Hbase進行細粒度的數(shù)據(jù)訪問控制。通過操作Ranger控制臺,管理員可以輕松的通過配置策略來控制用戶訪問HDFS文件夾、HDFS文件、數(shù)據(jù)庫、表、字段權限。這些策略可以為不同的用戶和組來設置,同時權限可與hadoop無縫對接。

簡單說有三大核心技術:拿數(shù)據(jù),算數(shù)據(jù),賣數(shù)據(jù)。

大數(shù)據(jù)核心技術有哪些?

大數(shù)據(jù)技術的體系龐大且復雜,基礎的技術包含數(shù)據(jù)的采集、數(shù)據(jù)預處理、分布式存儲、數(shù)據(jù)庫、數(shù)據(jù)倉庫、機器學習、并行計算、可視化等。

1、數(shù)據(jù)采集與預處理:FlumeNG實時日志收集系統(tǒng),支持在日志系統(tǒng)中定制各類數(shù)據(jù)發(fā)送方,用于收集數(shù)據(jù);Zookeeper是一個分布式的,開放源碼的分布式應用程序協(xié)調(diào)服務,提供數(shù)據(jù)同步服務。

2、數(shù)據(jù)存儲:Hadoop作為一個開源的框架,專為離線和大規(guī)模數(shù)據(jù)分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用于數(shù)據(jù)存儲。HBase,是一個分布式的、面向列的開源數(shù)據(jù)庫,可以認為是hdfs的封裝,本質(zhì)是數(shù)據(jù)存儲、NoSQL數(shù)據(jù)庫。

3、數(shù)據(jù)清洗:MapReduce作為Hadoop的查詢引擎,用于大規(guī)模數(shù)據(jù)集的并行計算。

4、數(shù)據(jù)查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數(shù)據(jù)映射為一張數(shù)據(jù)庫表,并提供HQL(HiveSQL)查詢功能。Spark啟用了內(nèi)存分布數(shù)據(jù)集,除了能夠提供交互式查詢外,它還可以優(yōu)化迭代工作負載。

5、數(shù)據(jù)可視化:對接一些BI平臺,將分析得到的數(shù)據(jù)進行可視化,用于指導決策服務。

什么是NoSQL數(shù)據(jù)庫?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,

泛指非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應用難題,包括超大規(guī)模數(shù)據(jù)的存儲。

(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 關系型數(shù)據(jù)庫與NoSQL的區(qū)別?

3.1 RDBMS

高度組織化結構化數(shù)據(jù)

結構化查詢語言(SQL)

數(shù)據(jù)和關系都存儲在單獨的表中。

數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言

嚴格的一致性

基礎事務

ACID

關系型數(shù)據(jù)庫遵循ACID規(guī)則

事務在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:

A (Atomicity) 原子性

原子性很容易理解,也就是說事務里的所有操作要么全部做完,要么都不做,事務成功的條件是事務里的所有操作都成功,只要有一個操作失敗,整個事務就失敗,需要回滾。比如銀行轉賬,從A賬戶轉100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。

C (Consistency) 一致性

一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務的運行不會改變數(shù)據(jù)庫原本的一致性約束。

I (Isolation) 獨立性

所謂的獨立性是指并發(fā)的事務之間不會互相影響,如果一個事務要訪問的數(shù)據(jù)正在被另外一個事務修改,只要另外一個事務未提交,它所訪問的數(shù)據(jù)就不受未提交事務的影響。比如現(xiàn)有有個交易是從A賬戶轉100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事務提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機也不會丟失。

3.2 NoSQL

代表著不僅僅是SQL

沒有聲明性查詢語言

沒有預定義的模式

鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫

最終一致性,而非ACID屬性

非結構化和不可預知的數(shù)據(jù)

CAP定理

高性能,高可用性和可伸縮性

分布式數(shù)據(jù)庫中的CAP原理(了解)

CAP定理:

Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的

Availability(可用性), 好的響應性能

Partition tolerance(分區(qū)容錯性) 可靠性

P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運作。

定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。

CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,

因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:

CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴展性上不太強大。

CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。

AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通??赡軐σ恢滦砸蟮鸵恍?。

CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。

而由于當前的網(wǎng)絡硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。

所以我們只能在一致性和可用性之間進行權衡,沒有NoSQL系統(tǒng)能同時保證這三點。

說明:C:強一致性 A:高可用性 P:分布式容忍性

舉例:

CA:傳統(tǒng)Oracle數(shù)據(jù)庫

AP:大多數(shù)網(wǎng)站架構的選擇

CP:Redis、Mongodb

注意:分布式架構的時候必須做出取舍。

一致性和可用性之間取一個平衡。多余大多數(shù)web應用,其實并不需要強一致性。

因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產(chǎn)品的方向。

4. 當下NoSQL的經(jīng)典應用

當下的應用是 SQL 與 NoSQL 一起使用的。

代表項目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型機,很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設備,也很貴的。

難點:

數(shù)據(jù)類型多樣性。

數(shù)據(jù)源多樣性和變化重構。

數(shù)據(jù)源改造而服務平臺不需要大面積重構。


分享名稱:分布式存儲nosql,分布式存儲ipfs
瀏覽地址:http://weahome.cn/article/dsecgog.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部