這期內(nèi)容當(dāng)中小編將會給大家?guī)碛嘘P(guān)python中怎么使用theano庫實現(xiàn)線性回歸,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
榆樹網(wǎng)站建設(shè)公司成都創(chuàng)新互聯(lián),榆樹網(wǎng)站設(shè)計制作,有大型網(wǎng)站制作公司豐富經(jīng)驗。已為榆樹1000+提供企業(yè)網(wǎng)站建設(shè)服務(wù)。企業(yè)網(wǎng)站搭建\外貿(mào)網(wǎng)站制作要多少錢,請找那個售后服務(wù)好的榆樹做網(wǎng)站的公司定做!代碼塊
import numpy as np import theano.tensor as T import theano import time class Linear_Reg(object): def __init__(self,x): self.a = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'a') self.b = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'b') self.result = self.a * x + self.b self.params = [self.a,self.b] def msl(self,y): return T.mean((y - self.result)**2) def regrun(rate,data,labels): X = theano.shared(np.asarray(data, dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(labels, dtype=theano.config.floatX),borrow = True) index = T.lscalar() #定義符號化的公式 x = T.dscalar('x') #定義符號化的公式 y = T.dscalar('y') #定義符號化的公式 reg = Linear_Reg(x = x) cost = reg.msl(y) a_g = T.grad(cost = cost,wrt = reg.a) #計算梯度 b_g = T.grad(cost = cost, wrt = reg.b) #計算梯度 updates=[(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新參數(shù) train_model = theano.function(inputs=[index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]}) done = True err = 0.0 count = 0 last = 0.0 start_time = time.clock() while done: #err_s = [train_model(i) for i in xrange(data.shape[0])] for i in xxx: err_s = [train_model(i) ] err = np.mean(err_s) #print err count = count + 1 if count > 10000 or err <0.1: done = False last = err end_time = time.clock() print 'Total time is :',end_time -start_time,' s' # 5.12s print 'last error :',err print 'a value : ',reg.a.get_value() # [ 2.92394467] print 'b value : ',reg.b.get_value() # [ 1.81334458] if __name__ == '__main__': rate = 0.01 data = np.linspace(1,10,10) labels = data * 3 + np.ones(data.shape[0],dtype=np.float64) +np.random.rand(data.shape[0]) regrun(rate,data,labels)
上述就是小編為大家分享的python中怎么使用theano庫實現(xiàn)線性回歸了,如果剛好有類似的疑惑,不妨參照上述分析進(jìn)行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。