真实的国产乱ⅩXXX66竹夫人,五月香六月婷婷激情综合,亚洲日本VA一区二区三区,亚洲精品一区二区三区麻豆

成都創(chuàng)新互聯(lián)網(wǎng)站制作重慶分公司

大數(shù)據(jù)學(xué)nosql,大數(shù)據(jù)學(xué)科質(zhì)量測(cè)評(píng)

大數(shù)據(jù)專業(yè)主要學(xué)什么???

1、大數(shù)據(jù)專業(yè),一般是指大數(shù)據(jù)采集與管理專業(yè);

成都創(chuàng)新互聯(lián)擁有網(wǎng)站維護(hù)技術(shù)和項(xiàng)目管理團(tuán)隊(duì),建立的售前、實(shí)施和售后服務(wù)體系,為客戶提供定制化的成都網(wǎng)站建設(shè)、網(wǎng)站設(shè)計(jì)、網(wǎng)站維護(hù)、成都服務(wù)器托管解決方案。為客戶網(wǎng)站安全和日常運(yùn)維提供整體管家式外包優(yōu)質(zhì)服務(wù)。我們的網(wǎng)站維護(hù)服務(wù)覆蓋集團(tuán)企業(yè)、上市公司、外企網(wǎng)站、購(gòu)物商城網(wǎng)站建設(shè)、政府網(wǎng)站等各類型客戶群體,為全球成百上千家企業(yè)提供全方位網(wǎng)站維護(hù)、服務(wù)器維護(hù)解決方案。

2、課程設(shè)置,大數(shù)據(jù)專業(yè)將從大數(shù)據(jù)應(yīng)用的三個(gè)主要層面(即數(shù)據(jù)管理、系統(tǒng)開(kāi)發(fā)、海量數(shù)據(jù)分析與挖掘)系統(tǒng)地幫助企業(yè)掌握大數(shù)據(jù)應(yīng)用中的各種典型問(wèn)題的解決辦法,包括實(shí)現(xiàn)和分析協(xié)同過(guò)濾算法、運(yùn)行和學(xué)習(xí)分類算法、分布式Hadoop集群的搭建和基準(zhǔn)測(cè)試、分布式Hbase集群的搭建和基準(zhǔn)測(cè)試、實(shí)現(xiàn)一個(gè)基于、Mapreduce的并行算法、部署Hive并實(shí)現(xiàn)一個(gè)的數(shù)據(jù)操作等等,實(shí)際提升企業(yè)解決實(shí)際問(wèn)題的能力。

3、核心技術(shù),

(1)大數(shù)據(jù)與Hadoop生態(tài)系統(tǒng)。詳細(xì)介紹分析分布式文件系統(tǒng)HDFS、集群文件系統(tǒng)ClusterFS和NoSQL Database技術(shù)的原理與應(yīng)用;分布式計(jì)算框架Mapreduce、分布式數(shù)據(jù)庫(kù)HBase、分布式數(shù)據(jù)倉(cāng)庫(kù)Hive。

(2)關(guān)系型數(shù)據(jù)庫(kù)技術(shù)。詳細(xì)介紹關(guān)系型數(shù)據(jù)庫(kù)的原理,掌握典型企業(yè)級(jí)數(shù)據(jù)庫(kù)的構(gòu)建、管理、開(kāi)發(fā)及應(yīng)用。

(3)分布式數(shù)據(jù)處理。詳細(xì)介紹分析Map/Reduce計(jì)算模型和Hadoop Map/Reduce技術(shù)的原理與應(yīng)用。

(4)海量數(shù)據(jù)分析與數(shù)據(jù)挖掘。詳細(xì)介紹數(shù)據(jù)挖掘技術(shù)、數(shù)據(jù)挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF數(shù)據(jù)挖掘算法–聚類算法;以及數(shù)據(jù)挖掘技術(shù)在行業(yè)中的具體應(yīng)用。

(5)物聯(lián)網(wǎng)與大數(shù)據(jù)。詳細(xì)介紹物聯(lián)網(wǎng)中的大數(shù)據(jù)應(yīng)用、遙感圖像的自動(dòng)解譯、時(shí)間序列數(shù)據(jù)的查詢、分析和挖掘。

(6)文件系統(tǒng)(HDFS)。詳細(xì)介紹HDFS部署,基于HDFS的高性能提供高吞吐量的數(shù)據(jù)訪問(wèn)。

(7)NoSQL。詳細(xì)介紹NoSQL非關(guān)系型數(shù)據(jù)庫(kù)系統(tǒng)的原理、架構(gòu)及典型應(yīng)用。

4、行業(yè)現(xiàn)狀,

今天,越來(lái)越多的行業(yè)對(duì)大數(shù)據(jù)應(yīng)用持樂(lè)觀的態(tài)度,大數(shù)據(jù)或者相關(guān)數(shù)據(jù)分析解決方案的使用在互聯(lián)網(wǎng)行業(yè),比如百度、騰訊、淘寶、新浪等公司已經(jīng)成為標(biāo)準(zhǔn)。而像電信、金融、能源這些傳統(tǒng)行業(yè),越來(lái)越多的用戶開(kāi)始嘗試或者考慮怎么樣使用大數(shù)據(jù)解決方案,來(lái)提升自己的業(yè)務(wù)水平。

在“大數(shù)據(jù)”背景之下,精通“大數(shù)據(jù)”的專業(yè)人才將成為企業(yè)最重要的業(yè)務(wù)角色,“大數(shù)據(jù)”從業(yè)人員薪酬持續(xù)增長(zhǎng),人才缺口巨大。

NoSQL 數(shù)據(jù)庫(kù):何時(shí)使用 NoSQL 與 SQL?

NoSQL 數(shù)據(jù)庫(kù)因其功能性、易于開(kāi)發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們?cè)絹?lái)越多地用于大數(shù)據(jù)和實(shí)時(shí) Web 應(yīng)用程序,在本文中,我們通過(guò)示例討論 NoSQL、何時(shí)使用 NoSQL 與 SQL 及其用例。

NoSQL是一種下一代數(shù)據(jù)庫(kù)管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫(kù)具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。

“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來(lái)就已經(jīng)存在類似的數(shù)據(jù)庫(kù)。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。

在處理大量數(shù)據(jù)時(shí),任何關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng) (RDBMS) 的響應(yīng)時(shí)間都會(huì)變慢。為了解決這個(gè)問(wèn)題,我們可以通過(guò)升級(jí)現(xiàn)有硬件來(lái)“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。

NoSQL 對(duì)于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對(duì)象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。

一些流行的 NoSQL 數(shù)據(jù)庫(kù)包括:

隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對(duì)象來(lái)更好地捕獲這些信息。

傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語(yǔ)言)語(yǔ)法來(lái)存儲(chǔ)和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫(kù)包含廣泛的功能,可以存儲(chǔ)和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。

有時(shí),NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語(yǔ)言或與 SQL 數(shù)據(jù)庫(kù)并列。SQL 和 NoSQL DBMS 之間的一個(gè)區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫(kù)使用 JOIN 子句來(lái)組合來(lái)自兩個(gè)或多個(gè)表的行,因?yàn)?NoSQL 數(shù)據(jù)庫(kù)本質(zhì)上不是表格的,所以這個(gè)功能并不總是可行或相關(guān)的。

但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫(kù)傾向于以不同的方式解決類似的問(wèn)題。

一般來(lái)說(shuō),在以下情況下,NoSQL 比 SQL 更可?。?/p>

許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫(kù),從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫(kù)的一些企業(yè)用例。

內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過(guò)程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫(kù)可以通過(guò)其靈活和開(kāi)放的數(shù)據(jù)模型為存儲(chǔ)多媒體內(nèi)容提供更好的選擇。

例如,福布斯在短短幾個(gè)月內(nèi)就構(gòu)建了一個(gè)基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。

大數(shù)據(jù)是指太大而無(wú)法通過(guò)傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時(shí)存儲(chǔ)和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時(shí)使用流處理來(lái)攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫(kù)的功能。

Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒(méi)有性能問(wèn)題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。

物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無(wú)需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺(tái)設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫(kù)為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。

Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動(dòng)態(tài)、非統(tǒng)一的數(shù)據(jù)集。

擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動(dòng)設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。

例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫(kù)每分鐘處理數(shù)百萬(wàn)個(gè)請(qǐng)求,同時(shí)還處理用戶數(shù)據(jù)并提供天氣更新。

如何學(xué)習(xí)及選擇大數(shù)據(jù)非關(guān)系型數(shù)據(jù)庫(kù)NoSQL

是的,NoSQL(非關(guān)系型數(shù)據(jù)庫(kù))簡(jiǎn)單來(lái)說(shuō),關(guān)系模型指的就是二維表格模型,而一個(gè)關(guān)系型數(shù)據(jù)庫(kù)就是由二維表及其之間的聯(lián)系組成的一個(gè)數(shù)據(jù)組織。 NoSQL最普遍的解釋是“非關(guān)系型的”,強(qiáng)調(diào)Key-Value Stores和文檔數(shù)據(jù)庫(kù)的優(yōu)點(diǎn),而不是單純的反對(duì)RDBMS。

非關(guān)系型數(shù)據(jù)庫(kù)特點(diǎn)

1.可以處理超大量的數(shù)據(jù)。

2.運(yùn)行在便宜的PC服務(wù)器集群上。PC集群擴(kuò)充起來(lái)非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

3.擊碎了性能瓶頸。NoSQL的支持者稱,通過(guò)NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。

4.沒(méi)有過(guò)多的操作。

5.支持者來(lái)源于社區(qū)。因?yàn)镹oSQL項(xiàng)目都是開(kāi)源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開(kāi)源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。

對(duì)于大數(shù)據(jù)中的NoSQL,以下不屬于NoSQL的數(shù)據(jù)庫(kù)是哪個(gè)

答案:A

1.文檔型數(shù)據(jù)庫(kù)

作為最受歡迎的NoSQL產(chǎn)品,文檔型數(shù)據(jù)庫(kù)MongoDB當(dāng)仁不讓地占據(jù)了第一的位置,同時(shí)它也是所有NoSQL數(shù)據(jù)庫(kù)中排名最靠前的產(chǎn)品(總排行榜第七名)。Apache基金會(huì)的CouchDB排在第二,基于.Net的數(shù)據(jù)庫(kù)RavenDB排在第三,Couchbase排在第四。

2.鍵值(Key-value)數(shù)據(jù)庫(kù)

鍵值(Key-value)數(shù)據(jù)庫(kù)是NoSQL領(lǐng)域中應(yīng)用范圍最廣的,也是涉及產(chǎn)品最多的一種模型。從最簡(jiǎn)單的BerkeleyDB到功能豐富的分布式數(shù)據(jù)庫(kù)Riak再到Amazon托管的DynamoDB不一而足。

在鍵值數(shù)據(jù)庫(kù)流行度排行中,Redis不出意外地排名第一,它是一款由Vmware支持的內(nèi)存數(shù)據(jù)庫(kù),總體排名第十一。排在第二位的是Memcached,它在緩存系統(tǒng)中應(yīng)用十分廣泛。排在之后的是Riak、BerkeleyDB、SimpleDB、DynamoDB以及甲骨文的Oracle NoSQL數(shù)據(jù)庫(kù)。值得注意的是,Oracle NoSQL數(shù)據(jù)庫(kù)上榜不久,得分已經(jīng)翻番,上升勢(shì)頭非常迅猛。

3. 列式存儲(chǔ)

列式存儲(chǔ)被視為NoSQL數(shù)據(jù)庫(kù)中非常重要的一種模式,其中Cassandra流行度最高,它已經(jīng)由Facebook轉(zhuǎn)交給到Apache進(jìn)行管理,同時(shí)Cassandra在全體數(shù)據(jù)庫(kù)排名中排在第十位,緊隨MongoDB成為第二受歡迎的NoSQL數(shù)據(jù)庫(kù)?;贖adoop的Hbase排在第二位,Hypertable排在第三。而Google的BigTable并未列入排名,原因是它并未正式公開(kāi)。


網(wǎng)站名稱:大數(shù)據(jù)學(xué)nosql,大數(shù)據(jù)學(xué)科質(zhì)量測(cè)評(píng)
URL網(wǎng)址:http://weahome.cn/article/dsegepg.html

其他資訊

在線咨詢

微信咨詢

電話咨詢

028-86922220(工作日)

18980820575(7×24)

提交需求

返回頂部