普通。就是學(xué)習(xí)數(shù)據(jù)庫(kù)的操作而已。讀取,編輯,刪除這三種操作邏輯。只要記憶力好,把那幾種命令語(yǔ)句背下來(lái),基本的操作就沒(méi)問(wèn)題。這對(duì)今后的其他課程尤其是編程是有幫助的,因?yàn)橛行┸浖?huì)設(shè)計(jì)到數(shù)據(jù)庫(kù)的讀寫操作。尤其是一些網(wǎng)站,肯定會(huì)連接數(shù)據(jù)庫(kù)。不會(huì)數(shù)據(jù)庫(kù)操作,就沒(méi)辦法制作動(dòng)態(tài)網(wǎng)站。
成都創(chuàng)新互聯(lián)公司專注于陳倉(cāng)網(wǎng)站建設(shè)服務(wù)及定制,我們擁有豐富的企業(yè)做網(wǎng)站經(jīng)驗(yàn)。 熱誠(chéng)為您提供陳倉(cāng)營(yíng)銷型網(wǎng)站建設(shè),陳倉(cāng)網(wǎng)站制作、陳倉(cāng)網(wǎng)頁(yè)設(shè)計(jì)、陳倉(cāng)網(wǎng)站官網(wǎng)定制、成都微信小程序服務(wù),打造陳倉(cāng)網(wǎng)絡(luò)公司原創(chuàng)品牌,更為您提供陳倉(cāng)網(wǎng)站排名全網(wǎng)營(yíng)銷落地服務(wù)。
NoSQL與關(guān)系型數(shù)據(jù)庫(kù)設(shè)計(jì)理念比較
關(guān)系型數(shù)據(jù)庫(kù)中的表都是存儲(chǔ)一些格式化的數(shù)據(jù)結(jié)構(gòu),每個(gè)元組字段的組成都一樣,即使不是每個(gè)元組都需要所有的字段,但數(shù)據(jù)庫(kù)會(huì)為每個(gè)元組分配所有的字段,這樣的結(jié)構(gòu)可以便于表與表之間進(jìn)行連接等操作,但從另一個(gè)角度來(lái)說(shuō)它也是關(guān)系型數(shù)據(jù)庫(kù)性能瓶頸的一個(gè)因素。而非關(guān)系型數(shù)據(jù)庫(kù)以鍵值對(duì)存儲(chǔ),它的結(jié)構(gòu)不固定,每一個(gè)元組可以有不一樣的字段,每個(gè)元組可以根據(jù)需要增加一些自己的鍵值對(duì),這樣就不會(huì)局限于固定的結(jié)構(gòu),可以減少一些時(shí)間和空間的開(kāi)銷。
特點(diǎn):
它們可以處理超大量的數(shù)據(jù)。
它們運(yùn)行在便宜的PC服務(wù)器集群上。
它們擊碎了性能瓶頸。
沒(méi)有過(guò)多的操作。
Bootstrap支持
缺點(diǎn):
但是一些人承認(rèn),沒(méi)有正式的官方支持,萬(wàn)一出了差錯(cuò)會(huì)是可怕的,至少很多管理人員是這樣看。
此外,nosql并未形成一定標(biāo)準(zhǔn),各種產(chǎn)品層出不窮,內(nèi)部混亂,各種項(xiàng)目還需時(shí)間來(lái)檢驗(yàn)
1、大數(shù)據(jù)專業(yè),一般是指大數(shù)據(jù)采集與管理專業(yè);
2、課程設(shè)置,大數(shù)據(jù)專業(yè)將從大數(shù)據(jù)應(yīng)用的三個(gè)主要層面(即數(shù)據(jù)管理、系統(tǒng)開(kāi)發(fā)、海量數(shù)據(jù)分析與挖掘)系統(tǒng)地幫助企業(yè)掌握大數(shù)據(jù)應(yīng)用中的各種典型問(wèn)題的解決辦法,包括實(shí)現(xiàn)和分析協(xié)同過(guò)濾算法、運(yùn)行和學(xué)習(xí)分類算法、分布式Hadoop集群的搭建和基準(zhǔn)測(cè)試、分布式Hbase集群的搭建和基準(zhǔn)測(cè)試、實(shí)現(xiàn)一個(gè)基于、Mapreduce的并行算法、部署Hive并實(shí)現(xiàn)一個(gè)的數(shù)據(jù)操作等等,實(shí)際提升企業(yè)解決實(shí)際問(wèn)題的能力。
3、核心技術(shù),
(1)大數(shù)據(jù)與Hadoop生態(tài)系統(tǒng)。詳細(xì)介紹分析分布式文件系統(tǒng)HDFS、集群文件系統(tǒng)ClusterFS和NoSQL Database技術(shù)的原理與應(yīng)用;分布式計(jì)算框架Mapreduce、分布式數(shù)據(jù)庫(kù)HBase、分布式數(shù)據(jù)倉(cāng)庫(kù)Hive。
(2)關(guān)系型數(shù)據(jù)庫(kù)技術(shù)。詳細(xì)介紹關(guān)系型數(shù)據(jù)庫(kù)的原理,掌握典型企業(yè)級(jí)數(shù)據(jù)庫(kù)的構(gòu)建、管理、開(kāi)發(fā)及應(yīng)用。
(3)分布式數(shù)據(jù)處理。詳細(xì)介紹分析Map/Reduce計(jì)算模型和Hadoop Map/Reduce技術(shù)的原理與應(yīng)用。
(4)海量數(shù)據(jù)分析與數(shù)據(jù)挖掘。詳細(xì)介紹數(shù)據(jù)挖掘技術(shù)、數(shù)據(jù)挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF數(shù)據(jù)挖掘算法–聚類算法;以及數(shù)據(jù)挖掘技術(shù)在行業(yè)中的具體應(yīng)用。
(5)物聯(lián)網(wǎng)與大數(shù)據(jù)。詳細(xì)介紹物聯(lián)網(wǎng)中的大數(shù)據(jù)應(yīng)用、遙感圖像的自動(dòng)解譯、時(shí)間序列數(shù)據(jù)的查詢、分析和挖掘。
(6)文件系統(tǒng)(HDFS)。詳細(xì)介紹HDFS部署,基于HDFS的高性能提供高吞吐量的數(shù)據(jù)訪問(wèn)。
(7)NoSQL。詳細(xì)介紹NoSQL非關(guān)系型數(shù)據(jù)庫(kù)系統(tǒng)的原理、架構(gòu)及典型應(yīng)用。
4、行業(yè)現(xiàn)狀,
今天,越來(lái)越多的行業(yè)對(duì)大數(shù)據(jù)應(yīng)用持樂(lè)觀的態(tài)度,大數(shù)據(jù)或者相關(guān)數(shù)據(jù)分析解決方案的使用在互聯(lián)網(wǎng)行業(yè),比如百度、騰訊、淘寶、新浪等公司已經(jīng)成為標(biāo)準(zhǔn)。而像電信、金融、能源這些傳統(tǒng)行業(yè),越來(lái)越多的用戶開(kāi)始嘗試或者考慮怎么樣使用大數(shù)據(jù)解決方案,來(lái)提升自己的業(yè)務(wù)水平。
在“大數(shù)據(jù)”背景之下,精通“大數(shù)據(jù)”的專業(yè)人才將成為企業(yè)最重要的業(yè)務(wù)角色,“大數(shù)據(jù)”從業(yè)人員薪酬持續(xù)增長(zhǎng),人才缺口巨大。