關(guān)系數(shù)據(jù)庫經(jīng)過幾十年的發(fā)展,已經(jīng)非常成熟,但同時也存在不足:
創(chuàng)新互聯(lián)公司是一家集網(wǎng)站建設(shè),巴彥企業(yè)網(wǎng)站建設(shè),巴彥品牌網(wǎng)站建設(shè),網(wǎng)站定制,巴彥網(wǎng)站建設(shè)報價,網(wǎng)絡(luò)營銷,網(wǎng)絡(luò)優(yōu)化,巴彥網(wǎng)站推廣為一體的創(chuàng)新建站企業(yè),幫助傳統(tǒng)企業(yè)提升企業(yè)形象加強企業(yè)競爭力??沙浞譂M足這一群體相比中小企業(yè)更為豐富、高端、多元的互聯(lián)網(wǎng)需求。同時我們時刻保持專業(yè)、時尚、前沿,時刻以成就客戶成長自我,堅持不斷學(xué)習(xí)、思考、沉淀、凈化自己,讓我們?yōu)楦嗟钠髽I(yè)打造出實用型網(wǎng)站。
表結(jié)構(gòu)是強約束的,業(yè)務(wù)變更時擴充很麻煩。
如果對大數(shù)據(jù)量的表進行統(tǒng)計運算,I/O會很高,因為即使只針對某列進行運算,也需要將整行數(shù)據(jù)讀入內(nèi)存。
全文搜索只能使用 Like 進行整表掃描,性能非常低。
針對這些不足,產(chǎn)生了不同的 NoSQL 解決方案,在某些場景下比關(guān)系數(shù)據(jù)庫更有優(yōu)勢,但同時也犧牲了某些特性,所以不能片面的迷信某種方案,應(yīng)將其作為 SQL 的有利補充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分為4類:
Redis 是典型,其 value 是具體的數(shù)據(jù)結(jié)構(gòu),包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱為數(shù)據(jù)結(jié)構(gòu)服務(wù)器。
以 list 為例:
LPOP key 是移除并返回隊列左邊的第一個元素。
如果用關(guān)系數(shù)據(jù)庫就比較麻煩了,需要操作:
Redis 的缺點主要體現(xiàn)在不支持完成的ACID事務(wù),只能保證隔離性和一致性,無法保證原子性和持久性。
最大的特點是 no-schema,無需在使用前定義字段,讀取一個不存在的字段也不會導(dǎo)致語法錯誤。
特點:
以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關(guān)系數(shù)據(jù)庫中會有很大的麻煩,而使用文檔數(shù)據(jù)庫則非常方便。
文檔數(shù)據(jù)庫的主要缺點:
關(guān)系數(shù)據(jù)庫是按行來存儲的,列式數(shù)據(jù)庫是按照列來存儲數(shù)據(jù)。
按行存儲的優(yōu)勢:
在某些場景下,這些優(yōu)勢就成為劣勢了,例如,計算超重人員的數(shù)據(jù),只需要讀取體重這一列進行統(tǒng)計即可,但行式存儲會將整行數(shù)據(jù)讀取到內(nèi)存中,很浪費。
而列式存儲中,只需要讀取體重這列的數(shù)據(jù)即可,I/O 將大大減少。
除了節(jié)省I/O,列式存儲還有更高的壓縮比,可以節(jié)省存儲空間。普通行式數(shù)據(jù)庫的壓縮比在 3:1 到 5:1 左右,列式數(shù)據(jù)庫在 8:1 到 30:1,因為單個列的數(shù)據(jù)相似度更高。
列式存儲的隨機寫效率遠低于行式存儲,因為行式存儲時同一行多個列都存儲在連續(xù)空間中,而列式存儲將不同列存儲在不連續(xù)的空間。
一般將列式存儲應(yīng)用在離線大數(shù)據(jù)分析統(tǒng)計場景,因為這時主要針對部分列進行操作,而且數(shù)據(jù)寫入后無須更新。
關(guān)系數(shù)據(jù)庫通過索引進行快速查詢,但在全文搜索的情景下,索引就不夠了,因為:
假設(shè)有一個交友網(wǎng)站,信息表如下:
需要匹配性別、地點、語言列。
需要匹配性別、地點、愛好列。
實際搜索中,各種排列組合非常多,關(guān)系數(shù)據(jù)庫很難支持。
全文搜索引擎是使用 倒排索引 技術(shù),建立單詞到文檔的索引,例如上面的表信息建立倒排索引:
所以特別適合根據(jù)關(guān)鍵詞來查詢文檔內(nèi)容。
上面介紹了幾種典型的NoSQL方案,及各自的適用場景和特點,您可以根據(jù)實際需求進行選擇。
NoSQL(NoSQL
=
Not
Only
SQL
),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關(guān)系型的數(shù)據(jù)存儲,相對于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。
隨著大數(shù)據(jù)的不斷發(fā)展,非關(guān)系型的數(shù)據(jù)庫現(xiàn)在成了一個極其熱門的新領(lǐng)域,非關(guān)系數(shù)據(jù)庫產(chǎn)品的發(fā)展非常迅速?,F(xiàn)今的計算機體系結(jié)構(gòu)在數(shù)據(jù)存儲方面要有龐大的水平擴展性,而NoSQL也正是致力于改變這一現(xiàn)狀。目前Google的
BigTable和Amazon
的Dynamo使用的就是NoSQL型數(shù)據(jù)庫,本文介紹了10種出色的NoSQL數(shù)據(jù)庫。
雖然NoSQL流行語火起來才短短一年的時間,但是不可否認,現(xiàn)在已經(jīng)開始了第二代運動。盡管早期的堆棧代碼只能算是一種實驗,然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個嚴酷的事實:技術(shù)越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲不得不進行重寫,也有少數(shù)人認為這就是所謂的2.0版本。這里列出一些比較知名的NoSQL工具,可以為大數(shù)據(jù)建立快速、可擴展的存儲庫。
給一個地址吧
特點:
它們可以處理超大量的數(shù)據(jù)。
它們運行在便宜的PC服務(wù)器集群上。
PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫結(jié)構(gòu)非常簡單時,SQL可能沒有太大用處。
沒有過多的操作。
雖然NoSQL的支持者也承認關(guān)系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。
Bootstrap支持
因為NoSQL項目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點:
易擴展
NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關(guān)系數(shù)據(jù)庫的關(guān)系型特性。數(shù)據(jù)之間無關(guān)系,這樣就非常容易擴展。也無形之間,在架構(gòu)的層面上帶來了可擴展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關(guān)系性,數(shù)據(jù)庫的結(jié)構(gòu)簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過復(fù)制模型也能實現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設(shè)計應(yīng)用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標準之一。當(dāng)它被用來管理大型數(shù)據(jù)集時,對于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。
Gephi
它可以用來對信息進行關(guān)聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡(luò)上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復(fù)雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。
MongoDB
這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務(wù)提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術(shù),不過基于這些技術(shù)的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應(yīng)商?!蹦壳?,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應(yīng)商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術(shù),而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當(dāng)企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領(lǐng)域有著豐富的經(jīng)驗?!癐BM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對高性能計算的工作負載管理等眾多技術(shù)。”
Intel
和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關(guān)系和市場營銷。
Microsoft
微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠的路要走。”
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。
Teradata
對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫這一領(lǐng)域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。
AMPLab
通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔?,我們才可以理解世界,而這也正是AMPLab所做的。AMPLab致力于機器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領(lǐng)域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學(xué)進入到全新的時代,而AMPLab為我們設(shè)想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對越來越復(fù)雜的各種難題。
NoSQL,指的是非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的
SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。
NoSQL(NoSQL
= Not Only SQL
),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關(guān)系型的數(shù)
據(jù)存儲,相對于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。
從這一新興技術(shù)中選擇一款正確的NoSQL數(shù)據(jù)庫是非常具有挑戰(zhàn)性的。比一下網(wǎng)建議在選擇時考慮以下因素:
并發(fā)控制
并
發(fā)控制指的是當(dāng)多個用戶同時更新運行時,用于保護數(shù)據(jù)庫完整性的各種技術(shù)。并發(fā)機制不正確可能導(dǎo)致臟讀、幻讀和不可重復(fù)讀等此類問題。并發(fā)控制的目的是保
證一個用戶的工作不會對另一個用戶的工作產(chǎn)生不合理的影響。在某些情況下,這些措施保證了當(dāng)用戶和其他用戶一起操作時,所得的結(jié)果和她單獨操作時的結(jié)果是
一樣的。在另一些情況下,這表示用戶的工作按預(yù)定的方式受其他用戶的影響。
封鎖
就是事務(wù)T在對某個數(shù)據(jù)對象(例如表、記錄等)操作之前,先向系統(tǒng)發(fā)出請求,對其加鎖。加鎖后事務(wù)T就對該數(shù)據(jù)對象有了一定的控制,在事務(wù)T釋放它的鎖之前,其它的事務(wù)不能更新此數(shù)據(jù)對象。
封鎖是一次只允許一個用戶讀取或修改的一種機制,是實現(xiàn)并發(fā)控制的一個非常重要的技術(shù)。
MVCC
Multi-Version Concurrency Control多版本并發(fā)控制,維持一個數(shù)據(jù)的多個版本使讀寫操作沒有沖突。MVCC優(yōu)化了數(shù)據(jù)庫并發(fā)系統(tǒng),使系統(tǒng)在有大量并發(fā)用戶時得到最高的性能,并且可以不用關(guān)閉服務(wù)器就直接進行熱備份。
ACID
指
數(shù)據(jù)庫事務(wù)正確執(zhí)行的四個基本要素的縮寫。包含:原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久
性(Durability)。一個支持事務(wù)(Transaction)的數(shù)據(jù)庫系統(tǒng),必需要具有這四種特性,否則在事務(wù)過程(Transaction
processing)當(dāng)中無法保證數(shù)據(jù)的正確性,交易過程極可能達不到交易方的要求。
None
一些系統(tǒng)不提供原子性。
鏡像
數(shù)據(jù)庫鏡像是DBMS根據(jù)DBA的要求,自動把整個數(shù)據(jù)庫或其中的關(guān)鍵數(shù)據(jù)復(fù)制到另一個磁盤上,每當(dāng)主數(shù)據(jù)庫更新時,DBMS會自動把更新后的數(shù)據(jù)復(fù)制過去,即DBMS自動保證鏡像數(shù)據(jù)與主數(shù)據(jù)的一致性。
鏡像分為同步和異步。
數(shù)據(jù)存儲
指的是數(shù)據(jù)的物理特性怎樣被存儲在數(shù)據(jù)庫中。
磁盤 數(shù)據(jù)被存儲在硬盤驅(qū)動器里;
GFS或谷歌文件系統(tǒng)是一個由谷歌開發(fā)的專有的分布式文件系統(tǒng);
Hadoop是Apache軟件框架,免費許可下支持數(shù)據(jù)密集型分布式應(yīng)用程序;
RAM隨機存儲器;
插件 可以添加外部插件;
Amazon S3通過Web服務(wù)接口提供存儲;
BDB:BDB
全稱是 “Berkeley DB”,它是MySQL具有事務(wù)能力的表類型,由Sleepycat
Software開發(fā)。BDB表類型提供了MySQL用戶長久期盼的功能,即事務(wù)控制能力。在任何RDBMS中,事務(wù)控制能力都是一種極其重要和寶貴的功
能。事務(wù)控制能力使得我們能夠確保一組命令確實已經(jīng)全部執(zhí)行成功,或者確保當(dāng)任何一個命令出現(xiàn)錯誤時所有命令的執(zhí)行結(jié)果均被退回。
實現(xiàn)語言
實現(xiàn)語言會影響數(shù)據(jù)庫的發(fā)展速度。典型的NoSQL數(shù)據(jù)庫是用低級語言如C / C + +編寫的。另一方面,那些更高層次的語言如Java,使自定義更容易。
實現(xiàn)語言有:C, C++, Erlang, Java, Python
特性
考慮下列哪一個特點對你的數(shù)據(jù)庫是最重要的:
持久性
可用性
一致性
分區(qū)容忍性
證書類型
下面這些許可證是一個不同的開放源碼許可的形式:
GPL:通用公共許可證
BSD:伯克利軟件分發(fā)
MPL:Mozilla公共許可證
EPL:Eclipse公共許可證
IDPL:最初的開發(fā)者的公共許可證
LGPL:較寬松通用公共許可證
存儲類型
存儲類型是NoSQL數(shù)據(jù)庫最大的不同,是決定使用哪款數(shù)據(jù)庫的一個首要指標。
關(guān)鍵字:支持get、put和刪除操作
按列存儲:相對于傳統(tǒng)的按行存儲,數(shù)據(jù)集成容易多了
面向文件系統(tǒng):存儲像是JSON或XML這樣的結(jié)構(gòu)化文件,很容易就能從面向?qū)ο筌浖蝎@取數(shù)據(jù)。
NoSQL,泛指非關(guān)系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關(guān)系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產(chǎn)生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應(yīng)用難題。
雖然NoSQL流行語火起來才短短一年的時間,但是不可否認,現(xiàn)在已經(jīng)開始了第二代運動。盡管早期的堆棧代碼只能算是一種實驗,然而現(xiàn)在的系統(tǒng)已經(jīng)更加的成熟、穩(wěn)定。不過現(xiàn)在也面臨著一個嚴酷的事實:技術(shù)越來越成熟——以至于原來很好的NoSQL數(shù)據(jù)存儲不得不進行重寫,也有少數(shù)人認為這就是所謂的2.0版本。這里列出一些比較知名的工具,可以為大數(shù)據(jù)建立快速、可擴展的存儲庫。
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關(guān)系型的數(shù)據(jù)存儲,相對于鋪天蓋地的關(guān)系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。
對于NoSQL并沒有一個明確的范圍和定義,但是他們都普遍存在下面一些共同特征:
不需要預(yù)定義模式:不需要事先定義數(shù)據(jù)模式,預(yù)定義表結(jié)構(gòu)。數(shù)據(jù)中的每條記錄都可能有不同的屬性和格式。當(dāng)插入數(shù)據(jù)時,并不需要預(yù)先定義它們的模式。
無共享架構(gòu):相對于將所有數(shù)據(jù)存儲的存儲區(qū)域網(wǎng)絡(luò)中的全共享架構(gòu)。NoSQL往往將數(shù)據(jù)劃分后存儲在各個本地服務(wù)器上。因為從本地磁盤讀取數(shù)據(jù)的性能往往好于通過網(wǎng)絡(luò)傳輸讀取數(shù)據(jù)的性能,從而提高了系統(tǒng)的性能。
彈性可擴展:可以在系統(tǒng)運行的時候,動態(tài)增加或者刪除結(jié)點。不需要停機維護,數(shù)據(jù)可以自動遷移。
分區(qū):相對于將數(shù)據(jù)存放于同一個節(jié)點,NoSQL數(shù)據(jù)庫需要將數(shù)據(jù)進行分區(qū),將記錄分散在多個節(jié)點上面。并且通常分區(qū)的同時還要做復(fù)制。這樣既提高了并行性能,又能保證沒有單點失效的問題。
異步復(fù)制:和RAID存儲系統(tǒng)不同的是,NoSQL中的復(fù)制,往往是基于日志的異步復(fù)制。這樣,數(shù)據(jù)就可以盡快地寫入一個節(jié)點,而不會被網(wǎng)絡(luò)傳輸引起遲延。缺點是并不總是能保證一致性,這樣的方式在出現(xiàn)故障的時候,可能會丟失少量的數(shù)據(jù)。
BASE:相對于事務(wù)嚴格的ACID特性,NoSQL數(shù)據(jù)庫保證的是BASE特性。BASE是最終一致性和軟事務(wù)。
NoSQL數(shù)據(jù)庫并沒有一個統(tǒng)一的架構(gòu),兩種NoSQL數(shù)據(jù)庫之間的不同,甚至遠遠超過兩種關(guān)系型數(shù)據(jù)庫的不同。可以說,NoSQL各有所長,成功的NoSQL必然特別適用于某些場合或者某些應(yīng)用,在這些場合中會遠遠勝過關(guān)系型數(shù)據(jù)庫和其他的NoSQL。
一般將NoSQL數(shù)據(jù)庫分為四大類:鍵值(Key-Value)存儲數(shù)據(jù)庫、列存儲數(shù)據(jù)庫、文檔型數(shù)據(jù)庫和圖形(Graph)數(shù)據(jù)庫。它們的數(shù)據(jù)模型、優(yōu)缺點、典型應(yīng)用場景。
鍵值(Key-Value)存儲數(shù)據(jù)庫Key指向Value的鍵值對,通常用hash表來實現(xiàn)查找速度快數(shù)據(jù)無結(jié)構(gòu)化(通常只被當(dāng)作字符串或者二進制數(shù)據(jù))內(nèi)容緩存,主要用于處理大量數(shù)據(jù)的高訪問負載,也用于一些日志系統(tǒng)等。
列存儲數(shù)據(jù)庫,以列簇式存儲,將同一列數(shù)據(jù)存在一起查找速度快,可擴展性強,更容易進行分布式擴展功能相對局限分布式的文件系統(tǒng)。
文檔型數(shù)據(jù)庫,Key-Value對應(yīng)的鍵值對,Value為結(jié)構(gòu)化數(shù)據(jù),數(shù)據(jù)結(jié)構(gòu)要求不嚴格,表結(jié)構(gòu)可變(不需要像關(guān)系型數(shù)據(jù)庫一樣需預(yù)先定義表結(jié)構(gòu)),查詢性能不高,而且缺乏統(tǒng)一的查詢語法,Web應(yīng)用。
圖形(Graph)數(shù)據(jù)庫,圖結(jié)構(gòu),利用圖結(jié)構(gòu)相關(guān)算法(如最短路徑尋址,N度關(guān)系查找等),很多時候需要對整個圖做計算才能得出需要的信息,而且這種結(jié)構(gòu)不太好做分布式的集群方案,社交網(wǎng)絡(luò),推薦系統(tǒng)等。