一般將NoSQL數(shù)據(jù)庫分為四大類:鍵值(Key-Value)存儲數(shù)據(jù)庫、列存儲數(shù)據(jù)庫、文檔型數(shù)據(jù)庫和圖形(Graph)數(shù)據(jù)庫。它們的數(shù)據(jù)模型、優(yōu)缺點、典型應(yīng)用場景。
創(chuàng)新互聯(lián)公司主要從事網(wǎng)站建設(shè)、網(wǎng)站制作、網(wǎng)頁設(shè)計、企業(yè)做網(wǎng)站、公司建網(wǎng)站等業(yè)務(wù)。立足成都服務(wù)邳州,十載網(wǎng)站建設(shè)經(jīng)驗,價格優(yōu)惠、服務(wù)專業(yè),歡迎來電咨詢建站服務(wù):13518219792
鍵值(Key-Value)存儲數(shù)據(jù)庫Key指向Value的鍵值對,通常用hash表來實現(xiàn)查找速度快數(shù)據(jù)無結(jié)構(gòu)化(通常只被當作字符串或者二進制數(shù)據(jù))內(nèi)容緩存,主要用于處理大量數(shù)據(jù)的高訪問負載,也用于一些日志系統(tǒng)等。
列存儲數(shù)據(jù)庫,以列簇式存儲,將同一列數(shù)據(jù)存在一起查找速度快,可擴展性強,更容易進行分布式擴展功能相對局限分布式的文件系統(tǒng)。
文檔型數(shù)據(jù)庫,Key-Value對應(yīng)的鍵值對,Value為結(jié)構(gòu)化數(shù)據(jù),數(shù)據(jù)結(jié)構(gòu)要求不嚴格,表結(jié)構(gòu)可變(不需要像關(guān)系型數(shù)據(jù)庫一樣需預(yù)先定義表結(jié)構(gòu)),查詢性能不高,而且缺乏統(tǒng)一的查詢語法,Web應(yīng)用。
圖形(Graph)數(shù)據(jù)庫,圖結(jié)構(gòu),利用圖結(jié)構(gòu)相關(guān)算法(如最短路徑尋址,N度關(guān)系查找等),很多時候需要對整個圖做計算才能得出需要的信息,而且這種結(jié)構(gòu)不太好做分布式的集群方案,社交網(wǎng)絡(luò),推薦系統(tǒng)等。
一、概念
SQL?(Structured?Query?Language)?數(shù)據(jù)庫,指關(guān)系型數(shù)據(jù)庫。主要代表:SQL?Server,Oracle,MySQL(開源),PostgreSQL(開源)。
NoSQL(Not?Only?SQL)泛指非關(guān)系型數(shù)據(jù)庫。主要代表:MongoDB,Redis,CouchDB。
二、區(qū)別
1、存儲方式
SQL數(shù)據(jù)存在特定結(jié)構(gòu)的表中;而NoSQL則更加靈活和可擴展,存儲方式可以省是JSON文檔、哈希表或者其他方式。SQL通常以數(shù)據(jù)庫表形式存儲數(shù)據(jù)。舉個栗子,存?zhèn)€學生借書數(shù)據(jù):
而NoSQL存儲方式比較靈活,比如使用類JSON文件存儲上表中熊大的借閱數(shù)據(jù):
2、表/數(shù)據(jù)集合的數(shù)據(jù)的關(guān)系
在SQL中,必須定義好表和字段結(jié)構(gòu)后才能添加數(shù)據(jù),例如定義表的主鍵(primary?key),索引(index),觸發(fā)器(trigger),存儲過程(stored?procedure)等。表結(jié)構(gòu)可以在被定義之后更新,但是如果有比較大的結(jié)構(gòu)變更的話就會變得比較復雜。在NoSQL中,數(shù)據(jù)可以在任何時候任何地方添加,不需要先定義表。例如下面這段代碼會自動創(chuàng)建一個新的"借閱表"數(shù)據(jù)集合:
NoSQL也可以在數(shù)據(jù)集中建立索引。以MongoDB為例,會自動在數(shù)據(jù)集合創(chuàng)建后創(chuàng)建唯一值_id字段,這樣的話就可以在數(shù)據(jù)集創(chuàng)建后增加索引。
從這點來看,NoSQL可能更加適合初始化數(shù)據(jù)還不明確或者未定的項目中。
3、外部數(shù)據(jù)存儲
SQL中如何需要增加外部關(guān)聯(lián)數(shù)據(jù)的話,規(guī)范化做法是在原表中增加一個外鍵,關(guān)聯(lián)外部數(shù)據(jù)表。例如需要在借閱表中增加審核人信息,先建立一個審核人表:
再在原來的借閱人表中增加審核人外鍵:
這樣如果我們需要更新審核人個人信息的時候只需要更新審核人表而不需要對借閱人表做更新。而在NoSQL中除了這種規(guī)范化的外部數(shù)據(jù)表做法以外,我們還能用如下的非規(guī)范化方式把外部數(shù)據(jù)直接放到原數(shù)據(jù)集中,以提高查詢效率。缺點也比較明顯,更新審核人數(shù)據(jù)的時候?qū)容^麻煩。
4、SQL中的JOIN查詢
SQL中可以使用JOIN表鏈接方式將多個關(guān)系數(shù)據(jù)表中的數(shù)據(jù)用一條簡單的查詢語句查詢出來。NoSQL暫未提供類似JOIN的查詢方式對多個數(shù)據(jù)集中的數(shù)據(jù)做查詢。所以大部分NoSQL使用非規(guī)范化的數(shù)據(jù)存儲方式存儲數(shù)據(jù)。
5、數(shù)據(jù)耦合性
SQL中不允許刪除已經(jīng)被使用的外部數(shù)據(jù),例如審核人表中的"熊三"已經(jīng)被分配給了借閱人熊大,那么在審核人表中將不允許刪除熊三這條數(shù)據(jù),以保證數(shù)據(jù)完整性。而NoSQL中則沒有這種強耦合的概念,可以隨時刪除任何數(shù)據(jù)。
6、事務(wù)
SQL中如果多張表數(shù)據(jù)需要同批次被更新,即如果其中一張表更新失敗的話其他表也不能更新成功。這種場景可以通過事務(wù)來控制,可以在所有命令完成后再統(tǒng)一提交事務(wù)。而NoSQL中沒有事務(wù)這個概念,每一個數(shù)據(jù)集的操作都是原子級的。
7、增刪改查語法
8、查詢性能
在相同水平的系統(tǒng)設(shè)計的前提下,因為NoSQL中省略了JOIN查詢的消耗,故理論上性能上是優(yōu)于SQL的。
package basic;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBC {
public void findAll() {
try {
// 獲得數(shù)據(jù)庫驅(qū)動
//由于長時間不寫,驅(qū)動名和URL都忘記了,不知道對不對,你應(yīng)該知道的,自己改一下的哈
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
// 創(chuàng)建連接
Connection conn = DriverManager.getConnection(url, userName,
password);
// 新建發(fā)送sql語句的對象
Statement st = conn.createStatement();
// 執(zhí)行sql
String sql = "select * from users";
ResultSet rs = st.executeQuery(sql);
// 處理結(jié)果
while(rs.next()){
//這個地方就是給你的封裝類屬性賦值
System.out.println("UserName:"+rs.getString(0));
}
// 關(guān)閉連接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void delete(){
try {
//步驟還是那六個步驟,前邊的兩步是一樣的
String url = "jdbc:oracle:thin:@localhost:1521:XE";
String userName = "system";
String password = "system";
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(url,userName,password);
//這里的發(fā)送sql語句的對象是PreparedStatement,成為預(yù)處理sql對象,因為按條件刪除是需要不定值的
String sql = "delete from users where id = ?";
PreparedStatement ps = conn.prepareStatement(sql);
ps.setInt(0, 1);
int row = ps.executeUpdate();
if(row!=0){
System.out.println("刪除成功!");
}
// 關(guān)閉連接
rs.close();
st.close();
conn.close();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
每種nosql都有自己的語法。跟t-sql類數(shù)據(jù)庫的方式類似。但。不是用sql語句。而是他自身定義的讀取語句
NoSQL 數(shù)據(jù)庫因其功能性、易于開發(fā)性和可擴展性而廣受認可,它們越來越多地用于大數(shù)據(jù)和實時 Web 應(yīng)用程序,在本文中,我們通過示例討論 NoSQL、何時使用 NoSQL 與 SQL 及其用例。
NoSQL是一種下一代數(shù)據(jù)庫管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負載的現(xiàn)代應(yīng)用程序。
“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來就已經(jīng)存在類似的數(shù)據(jù)庫。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。
在處理大量數(shù)據(jù)時,任何關(guān)系數(shù)據(jù)庫管理系統(tǒng) (RDBMS) 的響應(yīng)時間都會變慢。為了解決這個問題,我們可以通過升級現(xiàn)有硬件來“擴大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴展并且更具成本效益。
NoSQL 對于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。
一些流行的 NoSQL 數(shù)據(jù)庫包括:
隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對象來更好地捕獲這些信息。
傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語言)語法來存儲和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫包含廣泛的功能,可以存儲和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。
有時,NoSQL 也被稱為“ 不僅僅是 SQL ”,強調(diào)它可能支持類似 SQL 的語言或與 SQL 數(shù)據(jù)庫并列。SQL 和 NoSQL DBMS 之間的一個區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫使用 JOIN 子句來組合來自兩個或多個表的行,因為 NoSQL 數(shù)據(jù)庫本質(zhì)上不是表格的,所以這個功能并不總是可行或相關(guān)的。
但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫傾向于以不同的方式解決類似的問題。
一般來說,在以下情況下,NoSQL 比 SQL 更可?。?/p>
許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫,從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴展性,下面給出了 NoSQL 數(shù)據(jù)庫的一些企業(yè)用例。
內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫可以通過其靈活和開放的數(shù)據(jù)模型為存儲多媒體內(nèi)容提供更好的選擇。
例如,福布斯在短短幾個月內(nèi)就構(gòu)建了一個基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。
大數(shù)據(jù)是指太大而無法通過傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實時存儲和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時使用流處理來攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫的功能。
Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒有性能問題的情況下進行擴展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。
物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫為 IoT 服務(wù)提供商提供了可擴展性和更靈活的架構(gòu)。
Freshub就是這樣的一項服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動態(tài)、非統(tǒng)一的數(shù)據(jù)集。
擁有數(shù)十億智能手機用戶,可擴展性正成為在移動設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。
例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫每分鐘處理數(shù)百萬個請求,同時還處理用戶數(shù)據(jù)并提供天氣更新。
AWS推出了與SQL兼容的查詢語言PartiQL,只要數(shù)據(jù)庫查詢引擎提供PartiQL支持,使用者就能以PartiQL單一查詢關(guān)聯(lián)式數(shù)據(jù)庫的結(jié)構(gòu)化資料,以及開放資料格式中的巢狀資料或是半結(jié)構(gòu)化資料,甚至還能用來查詢NoSQL或是文件數(shù)據(jù)庫中無固定結(jié)構(gòu)(Schema-less)的資料。除了AWS自家的數(shù)據(jù)庫服務(wù),NoSQL數(shù)據(jù)庫Couchbase Server也承諾將會支持PartiQL。
企業(yè)資料分散在關(guān)聯(lián)式數(shù)據(jù)庫、非關(guān)聯(lián)式數(shù)據(jù)庫以及資料湖泊中。高度結(jié)構(gòu)化的資料,儲存在SQL數(shù)據(jù)庫或是資料倉儲;無固定結(jié)構(gòu)的資料則由鍵值儲存、圖形數(shù)據(jù)庫(Graph Database)、分類帳數(shù)據(jù)庫或是時間序列數(shù)據(jù)庫等NoSQL數(shù)據(jù)庫處理;而在資料湖泊中的資料,可能也有部分缺乏結(jié)構(gòu),或是可能為巢狀或是多值結(jié)構(gòu)。不同的資料類型適用于不同的使用案例,而每種類型的資料,可能都有自己的查詢語言。
不同的資料儲存對應(yīng)不同的查詢語言,當企業(yè)更換資料格式或是數(shù)據(jù)庫引擎時,可能還需要跟著改變應(yīng)用程式和查詢語法,AWS提到,這對于資料的應(yīng)用,特別是使用資料湖泊的靈活性與效率,有著很大的阻礙。為了統(tǒng)一不同類型數(shù)據(jù)庫存取方法,AWS發(fā)布了查詢語言PartiQL,這是個與SQL兼容的查詢語言,可以用來查詢以各種格式儲存在各地的資料。
用戶可以使用PartiQL來查詢關(guān)聯(lián)式數(shù)據(jù)庫,像是在Redshift實作交易或是資料分析等應(yīng)用,或?qū)τ贏mazon S3資料湖泊的開放資料格式,同樣能使用PartiQL對巢狀資料與半結(jié)構(gòu)化資料例如Amazon Ion格式進行查詢,另外,PartiQL也可用于文件數(shù)據(jù)庫等NoSQL數(shù)據(jù)庫,查詢無固定結(jié)構(gòu)的資料。
AWS表示,PartiQL的出現(xiàn),是為了滿足自家查詢和轉(zhuǎn)換大量資料的需求,其提供嚴格的SQL兼容性,可與標準SQL混合使用,執(zhí)行連接(Join)、過濾(Filtering)與聚合(Aggregation)操作,并以最小擴充支持巢狀和半結(jié)構(gòu)化資料,讓開發(fā)者以簡單且一致的方法,不需要更改查詢語言,就能查詢各種格式和服務(wù)的資料。
PartiQL具格式獨立性與儲存獨立性,PartiQL語法和語義不依賴任何資料格式,無論使用者是要查詢JSON、Parquet、ORC、CSV還是Ion等格式,查詢語句的寫法都相同,PartiQL的查詢在綜合邏輯類型系統(tǒng)上運作,才對應(yīng)到不同底層的格式。而PartiQL也不相依于特定資料儲存,因此適用于不同的底層資料儲存。
雖然過去針對跨不同類型數(shù)據(jù)庫查詢的問題,已有不少解決方案,AWS指出,像是Postgres JSON同樣也兼容于SQL,但是卻無法良好地處理JSON巢狀資料;而半結(jié)構(gòu)化查詢語言,雖然能良好處理巢狀資料,但卻無法與SQL語言兼容。AWS提到,PartiQL是第一個能夠完全解決這些問題的查詢語言。
目前AWS已在自家多項服務(wù)支持PartiQL,包括Amazon S3 Select、Amazon Glacier Select、Amazon Redshift Spectrum、Amazon QLDB,接下來幾個月將會有更多的AWS服務(wù)支持PartiQL,Couchbase也公布將加入支持PartiQL的行列?,F(xiàn)在PartiQL以Apache2.0授權(quán)許可開源,公開教學、規(guī)范以及參考實作,所有社群都能使用并參與貢獻。