pre
梓潼網(wǎng)站建設公司創(chuàng)新互聯(lián),梓潼網(wǎng)站設計制作,有大型網(wǎng)站制作公司豐富經(jīng)驗。已為梓潼上1000家提供企業(yè)網(wǎng)站建設服務。企業(yè)網(wǎng)站搭建\成都外貿網(wǎng)站建設公司要多少錢,請找那個售后服務好的梓潼做網(wǎng)站的公司定做!
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
作者:邁克爾·貝耶勒(Michael Beyeler)
如需轉載請聯(lián)系華章 科技
如果已安裝Anaconda Python版本,就已經(jīng)安裝好了可以使用的 Matplotlib。否則,可能要訪問官網(wǎng)并從中獲取安裝說明:
正如使用np作為 NumPy 的縮寫,我們將使用一些標準的縮寫來表示 Matplotlib 的引入:
在本書中,plt接口會被頻繁使用。
讓我們創(chuàng)建第一個繪圖。
假設想要畫出正弦函數(shù)sin(x)的線性圖。得到函數(shù)在x坐標軸上0≤x<10內所有點的值。我們將使用 NumPy 中的 linspace 函數(shù)來在x坐標軸上創(chuàng)建一個從0到10的線性空間,以及100個采樣點:
可以使用 NumPy 中的sin函數(shù)得到所有x點的值,并通過調用plt中的plot函數(shù)把結果畫出來:
你親自嘗試了嗎?發(fā)生了什么嗎?有沒有什么東西出現(xiàn)?
實際情況是,取決于你在哪里運行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個腳本中運行 Matplotlib,需要加上下面的這行調用:
在腳本末尾調用這個函數(shù),你的繪圖就會出現(xiàn)!
2. 從 IPython shell 中繪圖
這實際上是交互式地執(zhí)行Matplotlib最方便的方式。為了讓繪圖出現(xiàn),需要在啟動 IPython 后使用所謂的%matplotlib魔法命令。
接下來,無須每次調用plt.show()函數(shù),所有的繪圖將會自動出現(xiàn)。
3. 從 Jupyter Notebook 中繪圖
如果你是從基于瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:
在本書中,將會使用inline選項:
現(xiàn)在再次嘗試一下:
上面的命令會得到下面的繪圖輸出結果:
如果想要把繪圖保存下來留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件后綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最后一個測試,讓我們對外部數(shù)據(jù)集進行可視化,比如scikit-learn中的數(shù)字數(shù)據(jù)集。
為此,需要三個可視化工具:
那么開始引入這些包吧:
第一步是載入實際數(shù)據(jù):
如果沒記錯的話,digits應該有兩個不同的數(shù)據(jù)域:data域包含了真正的圖像數(shù)據(jù),target域包含了圖像的標簽。相對于相信我們的記憶,我們還是應該對digits稍加 探索 。輸入它的名字,添加一個點號,然后按Tab鍵:digits.TAB,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區(qū)分。
兩種情況中,第一維對應的都是數(shù)據(jù)集中的圖像數(shù)量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。
因此,如果想要繪制出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數(shù)組切片從數(shù)據(jù)集中獲取一幅圖像:
這里是從1797個元素的數(shù)組中獲取了它的第一行數(shù)據(jù),這行數(shù)據(jù)對應的是8×8=64個像素。下面就可以使用plt中的imshow函數(shù)來繪制這幅圖像:
上面的命令得到下面的輸出:
此外,這里也使用cmap參數(shù)指定了一個顏色映射。默認情況下,Matplotlib 使用MATLAB默認的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最后,可以使用plt的subplot函數(shù)繪制全部數(shù)字的樣例。subplot函數(shù)與MATLAB中的函數(shù)一樣,需要指定行數(shù)、列數(shù)以及當前的子繪圖索引(從1開始計算)。我們將使用for 循環(huán)在數(shù)據(jù)集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。
這會得到下面的輸出結果:
關于作者:Michael Beyeler,華盛頓大學神經(jīng)工程和數(shù)據(jù)科學專業(yè)的博士后,主攻仿生視覺計算模型,用以為盲人植入人工視網(wǎng)膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬于神經(jīng)科學、計算機工程、計算機視覺和機器學習的交叉領域。同時他也是多個開源項目的積極貢獻者。
本文摘編自《機器學習:使用OpenCV和Python進行智能圖像處理》,經(jīng)出版方授權發(fā)布。
1,xlable,ylable設置x,y軸的標題文字。
2,title設置標題。
3,xlim,ylim設置x,y軸顯示范圍。
plt.show()顯示繪圖窗口,通常情況下,show()會阻礙程序運行,帶-wthread等參數(shù)的環(huán)境下,窗口不會關閉。
plt.saveFig()保存圖像。
面向對象繪圖
1,當前圖表和子圖可以用gcf(),gca()獲得。
subplot()繪制包含多個圖表的子圖。
configure subplots,可調節(jié)子圖與圖表邊框距離。
可以通過修改配置文件更改對象屬性。
圖標顯示中文
1,在程序中直接指定字體。
2, 在程序開始修改配置字典reParams.
3,修改配置文件。
Artist對象
1,圖標的繪制領域。
2,如何在FigureCanvas對象上繪圖。
3,如何使用Renderer在FigureCanvas對象上繪圖。
FigureCanvas和Render處理底層圖像操作,Artist處理高層結構。
分為簡單對象和容器對象,簡單的Aritist是標準的繪圖元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器類型包含許多簡單的的 Aritist對象,使他們構成一個整體,例如Axis,Axes,Figure等。
直接創(chuàng)建Artist對象進項繪圖操作步奏:
1,創(chuàng)建Figure對象(通過figure()函數(shù),會進行許多初始化操作,不建議直接創(chuàng)建。)
2,為Figure對象創(chuàng)建一個或多個Axes對象。
3,調用Axes對象的方法創(chuàng)建各類簡單的Artist對象。
Figure容器
如何找到指定的Artist對象。
1,可調用add_subplot()和add_axes()方法向圖表添加子圖。
2,可使用for循環(huán)添加柵格。
3,可通過transform修改坐標原點。
Axes容器
1,patch修改背景。
2,包含坐標軸,坐標網(wǎng)格,刻度標簽,坐標軸標題等內容。
3,get_ticklabels(),,get-ticklines獲得刻度標簽和刻度線。
1,可對曲線進行插值。
2,fill_between()繪制交點。
3,坐標變換。
4,繪制陰影。
5,添加注釋。
1,繪制直方圖的函數(shù)是
2,箱線圖(Boxplot)也稱箱須圖(Box-whisker Plot),是利用數(shù)據(jù)中的五個統(tǒng)計量:最小值、第一四分位
數(shù)、中位數(shù)、第三四分位數(shù)與最大值來描述數(shù)據(jù)的一種方法,它可以粗略地看出數(shù)據(jù)是否具有對稱性以及分
布的分散程度等信息,特別可以用于對幾個樣本的比較。
3,餅圖就是把一個圓盤按所需表達變量的觀察數(shù)劃分為若干份,每一份的角度(即面積)等價于每個觀察
值的大小。
4,散點圖
5,QQ圖
低層繪圖函數(shù)
類似于barplot(),dotchart()和plot()這樣的函數(shù)采用低層的繪圖函數(shù)來畫線和點,來表達它們在頁面上放置的位置以及其他各種特征。
在這一節(jié)中,我們會描述一些低層的繪圖函數(shù),用戶也可以調用這些函數(shù)用于繪圖。首先我們先講一下R怎么描述一個頁面;然后我們講怎么在頁面上添加點,線和文字;最后講一下怎么修改一些基本的圖形。
繪圖區(qū)域與邊界
R在繪圖時,將顯示區(qū)域劃分為幾個部分。繪制區(qū)域顯示了根據(jù)數(shù)據(jù)描繪出來的圖像,在此區(qū)域內R根據(jù)數(shù)據(jù)選擇一個坐標系,通過顯示出來的坐標軸可以看到R使用的坐標系。在繪制區(qū)域之外是邊沿區(qū),從底部開始按順時針方向分別用數(shù)字1到4表示。文字和標簽通常顯示在邊沿區(qū)域內,按照從內到外的行數(shù)先后顯示。
添加對象
在繪制的圖像上還可以繼續(xù)添加若干對象,下面是幾個有用的函數(shù),以及對其功能的說明。
?points(x, y, ...),添加點
?lines(x, y, ...),添加線段
?text(x, y, labels, ...),添加文字
?abline(a, b, ...),添加直線y=a+bx
?abline(h=y, ...),添加水平線
?abline(v=x, ...),添加垂直線
?polygon(x, y, ...),添加一個閉合的多邊形
?segments(x0, y0, x1, y1, ...),畫線段
?arrows(x0, y0, x1, y1, ...),畫箭頭
?symbols(x, y, ...),添加各種符號
?legend(x, y, legend, ...),添加圖列說明
為避免中文顯示出錯,需導入matplotlib.pylab庫
1.2.1 確定數(shù)據(jù)
1.2.2 創(chuàng)建畫布
1.2.3 添加標題
1.2.4 添加x,y軸名稱
1.2.5 添加x,y軸范圍
1.2.6 添加x,y軸刻度
1.2.7 繪制曲線、圖例, 并保存圖片
保存圖片時,dpi為清晰度,數(shù)值越高越清晰。請注意,函數(shù)結尾處,必須加plt.show(),不然圖像不顯示。
繪制流程與繪制不含子圖的圖像一致,只需注意一點:創(chuàng)建畫布。
合理調整figsize、dpi,可避免出現(xiàn)第一幅圖橫軸名稱與第二幅圖標題相互遮蓋的現(xiàn)象.
2.2.1 rc參數(shù)類型
2.2.2 方法1:使用rcParams設置
2.2.3 方法2:plot內設置
2.2.4 方法3:plot內簡化設置
方法2中,線條形狀,linestyle可簡寫為ls;線條寬度,linewidth可簡寫為lw;線條顏色,color可簡寫為c,等等。
不寫出y=f(x)這樣的表達式,由隱函數(shù)的等式直接繪制圖像,以x2+y2+xy=1的圖像為例,使用sympy間接調用matplotlib工具的代碼和該二次曲線圖像如下(注意python里的乘冪符號是**而不是^,還有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),這幾點和matlab的區(qū)別很大)
直接在命令提示行的里面運行代碼的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);